* Allow scaleValue() for 32bit values
* Victron: Implement CAN message 0x360
This one-byte message is set to 0xff to request charging below a
certain SoC threshold (10% in my tests).
* Pytes: Add support for native CAN protocol
The recently added PytesCanReceiver.cpp implements the Victron CAN protocol.
This change additionally adds support for the native Pytes CAN
protocol messages.
Features only supported in Pytes protocol:
- High-resolution state of charge / full and remaining mAh
- Charge cycle counter
- Balancing state
Features only supported in Victron protocol:
- FW version
- Serial number
Note that the only known way to select the native Pytes protocol is
via the serial console (Cisco-compatible cables work):
```
login config
setprt PYTES
logout
```
to return to Victron protocol use:
```
login config
setprt VICTRON
logout
```
to return to DIP-switch based protocol setting:
```
login config
setprt DIP
logout
```
I noticed that these are missing while looking at dissassembly of the
Pytes implementation of the protocol. I also found Pylontech sample
CAN messages] which match the Pytes implementation [1]:
```
CAN ID – followed by 2 to 8 bytes of data:
0x351 – 14 02 74 0E 74 0E CC 01 – Battery voltage + current limits
^^^^^ discharge cutoff voltage 46.0V
0x355 – 1A 00 64 00 – State of Health (SOH) / State of Charge (SOC)
0x356 – 4e 13 02 03 04 05 – Voltage / Current / Temp
0x359 – 00 00 00 00 0A 50 4E – Protection & Alarm flags
^^^^^ always 0x50 0x59 in Pytes implementation
^^ module count (matches the blog article image)
0x35C – C0 00 – Battery charge request flags
^^ two possible additional flags (bit 3 and bit 4)
0x35E – 50 59 4C 4F 4E 20 20 20 – Manufacturer name (“PYLON “)
^^^^^^^^^^^^^^ Note: Pytes sends a 5-byte message "PYTES" instead
padding with spaces
```
The extra charge request flag is "bit4: SOC low" (Seems to be SoC < 10%
threshold for Pytes), I haven't bothered adding that as it provides
little value.
[1] https://www.setfirelabs.com/green-energy/pylontech-can-reading-can-replication
* implements UI to configure battery discharge limit
* adds support for discharge limit to MQTT battery provider
* add option to hide `issues` section from battery live view (for MQTT battery)
If the string contains control characters for some reason, the browser
will reject the json with the error `bad control character in string
literal`.
This adds a setManufacturer function that validates the string is ASCII
and will cut off the string at the first non-ascii character.
Pylontech: `PYLON` (50 59 4C 4F 4E 20 20 20)
Pytes: `PYTES` (50 59 54 45 53)
Deye: `DY001` (44 59 30 30 31 03 E8 03)
See https://github.com/helgeerbe/OpenDTU-OnBattery/discussions/1226#discussioncomment-10566898
Commit accc70dea0 added the battery SoC to
the live view header. But due to getSoC() returning an int,
the precision was limited.
This changes getSoC() to return float so when a source with higher
precision is available, the respective precision is shown.
* show battery voltage, current, and power in live view header (the "totals")
* show battery current and power in extra card
* use soc and current precision in live view
* BatteryStats: do not knowingly publish invalid data: not all battery
providers know all values the base class manages. make sure to
prevent publishing invalid values.
Co-authored-by: Bernhard Kirchen <schlimmchen@posteo.net>
queue every text event until the frame was checked by it checksum. then
process the data directly into the buffer struct. do not clear the
buffer struct, so it will always include the most recent value of a
particular data point.
* updating the SoC or value shall also update the general timestamp, as
the latter is defined as "any value changed", which includes SoC and
voltage, of course.
* if the last update is not a valid timestamp at all, the
updateAvailable method must always return false, obviously.
currently this is only supported by the Pylontech battery provider, as
it reports a "charge battery immediately" alarm. this will also be
implemented by the JK BMS provider, and possibly also by the smart shunt
provider.
the method will be used to determine whether or not to start charging
the battery using the (Huawei) charger.
the DPL is interested in the battery's voltage to make decisions about
draining the battery or letting it charge (if the user opts to use
voltage thresholds rather than SoC thresholds). using the DC input
voltage reported by the inverter under control has disadvantages:
* the data might be quite old due to the communication protocol
implementation. more inverters being polled means even more lag. the
connection being wireless makes this even worse, due to the need
to retry the occasional lost packet, etc.
* the data is not very accurate, since the DC input of the inverter is
actually some cabling and a couple of junctions away from the actual
battery. this voltage drop can mostly only be estimated and is worse
with higher load. the load correction factor is there to mitigate
this, but it has its own problems and is cumbersome to calibrate.
instead, this change aims to use more accurate battery voltage readings,
if possible. the DPL now prefers the voltage as reported by the BMS,
since it is for sure the closest to the battery of all measuring points
and measures its voltage accurately regardless of the load (the voltage
reading will still drop with higher loads, but this will be only due to
the battery's internal resistance, not that of cabling or junctions). if
no BMS voltage reading is available, the DPL will instead use the charge
controller's voltage reading, as it is available with much higher
frequency and is assumed to be more accurate as it offers a resolution
of 10mV. only if none of these two sources can be used, the inverter DC
input voltage is assumed as the battery voltage.
closes#655.
the Victron SmartShunt communicates the SoC value in permille. this
should be displayed in the web UI accordingly. this is a good excuse to
fully move ownership of the SoC value to the BatteryStats base class and
add a precision indicator variable. this is required to be set each time
a derived class (a battery provider) wants to update the SoC value. the
precision is then used when populating the JSON data for the web UI
(live view).
related to #573.
in the respective context, the DPL only needs to be sure that the SoC
value is not outdated. it should not even care about other values
reported by the battery interface. hence, the isValid() method shall be
concerned with the SoC value timestamp only. the method is renamed for
clarity.
this extends the MqttBattery implementation by an additional topic which
allows to subscribe to receive battery voltage readings through the MQTT
broker. similar to the battery SoC topic, this allows to import a
critical battery data point for the DPL, in case the user chooses to use
voltage thresholds rather than SoC thresholds to control the DPL. if an
otherwise incompatible BMS is available which publishes the battery pack
voltage through MQTT, this can now be used to feed accurate voltage
readings to the DPL.
the BatteryStats base class shall be able to tell the total battery pack
voltage. for that reason, and to avoid code duplication, the voltage is
now handled in the base class and treated as a datum that is common to
all battery providers.
* pylontech HA integration: remove unused method/variable
* make MqttHandlePylontechHassClass::publishConfig() private.
there are no outside users of that method.
* rename to MqttHandleBatteryHass
* battery HA integration: merge methods and bring back forceUpdate().
even though the forceUpdate() method was not in use before, it makes
sense to implement it and use it when the battery config changes.
rather than controlling a separate flag, it now changes the _doPublish
flag of the class, which also triggers publishing the device config to
Home Assistant when an MQTT connection problem was detected. since
both situations are now handled similarly, we can merge the loop() and
publishConfig() methods.
* battery: provider specific sensors for HA
* move Battery MQTT loop to BatteryStats
the BatteryStats class should handle the MQTT publishing, including the
interval. for the calculation of a reasonable Home Assistent expiration
value this class now also knows the maximum publish interval.
* JK BMS: fix publishing values for Home Assistent
Home Assistent values expire, because we set them to expire after three
MQTT publish durations. for that reason, we need to re-publish all
values after our self-inflicted full publish interval.
* define JK BMS sensors for Home Assistent
closes#482.
this battery provider implementation subscribes to a user-configurable
MQTT topic to retrieve the battery SoC value. the value is not
re-published under a different topic. there is no card created in the
web app's live view, since the SoC is already part of the totals at the
top of the live view. that is the only info this battery provider
implements.
closes#293.
relates to #581.
there are more interesting values available to display in the live view.
however, adding them made the list of values very long. this can be
mitigated by using a new column/card, which uses the available screen
space nicely on bigger screens.
* add more values to web app live view. this should add all interesting
values for the web app live view. those include important values and
values that change frequently.
* add more interesting JK BMS dummy messages: one has 0% SoC and an
alarm (discharge undervoltage) set. the other has the undertemperature
alarm set.
* add alarms and warnings to live view
* publish alarm and status bits through MQTT individually
* publish cell voltages to MQTT broker
* remove trailing spaces in BatteryStats class
* Move Mppt logic to subclass
* Added Definitions for Shunts and restructering
* First integration of SmartShunt data into Web Interface
* Code cleanup
* VE.Direct: whitespace cleanup
* VE.Direct: manage HardwareSerial in unique_ptr
* VE.Direct: _efficiency is only needed by MPPT
* VE.Direct: keep as many members private as possible
* VE.Direct: use int8_t for pins (as before)
* VictronSmartShunt: _verboseLogging is not used
* VE.Direct: OR (off reason) is MPPT specific
it also applies to Phoenix inverters and Smart BuckBoost, but since
there is no support for those, the code is moved to the MPPT controller.
* Added Shunt alarms to liveview
Changed from double to int for several readings
* Update build.yml to allow manual builds
---------
Co-authored-by: Philipp Sandhaus <philipp.sandhaus@cewe.de>
Co-authored-by: Bernhard Kirchen <schlimmchen@posteo.net>
* JK BMS: avoid trailing whitespace in debug output
* JK BMS: publish data points through MQTT
* JK BMS: updateFrom: skip data points with equal value
this changes the interpretation of the timestamp in data containers that
are merely updated from other data containers: this is the oldest
timestamp known where the value was as recorded by the data point in its
respective container.
the data container constructed from an answer will -- naturally -- have
the timetamps of its data points set to the time they were constructed.
* JK BMS: only publish changed values to MQTT broker
all values are still published once every minute if the MQTT retain flag
is NOT set. otherwise, the constant values are only published once on
startup.
* JK BMS: avoid trailing whitespace in debug output
* JK BMS: publish data points through MQTT
* JK BMS: updateFrom: skip data points with equal value
this changes the interpretation of the timestamp in data containers that
are merely updated from other data containers: this is the oldest
timestamp known where the value was as recorded by the data point in its
respective container.
the data container constructed from an answer will -- naturally -- have
the timetamps of its data points set to the time they were constructed.
* JK BMS: only publish changed values to MQTT broker
all values are still published once every minute if the MQTT retain flag
is NOT set. otherwise, the constant values are only published once on
startup.