this changeset adds support for parsing the MQTT battery provider's SoC
and voltage topics' payloads as JSON to extract a numeric value at a
configurable path.
* show battery voltage, current, and power in live view header (the "totals")
* show battery current and power in extra card
* use soc and current precision in live view
* BatteryStats: do not knowingly publish invalid data: not all battery
providers know all values the base class manages. make sure to
prevent publishing invalid values.
Co-authored-by: Bernhard Kirchen <schlimmchen@posteo.net>
This breaks existing HASS automation, as entity names and MQTT topics change!
* include dtu-unique-id in DPL MQTT HASS topics to allow multiple DTUs to be controlled
* fix filename "src/MqttHandlVedirectHass.cpp"
* refactor: use values from 'MqttHandleHass', add 'via_device' to all HASS devices
* set step size for power limiter voltage values
Hoymiles inverters allow setting relative limits with a precision of 0.1 %.
this changeset allows to utilize this precision.
* preserve accuracy when decoding power limit
* Web API: process floating point limits
* MQTT: process floating point limits
* use appropriate accuracy for limits in web UI
* HASS: step for relative inverter limit is 0.1 %
we previously used the mutex to protect writing the target variable.
however, we would only do that for the old usecase, where a plain float
value in Watts was expected as the topic's payload.
make the MQTT power meter pre-selected when editing power meter settings
for the first time. the MQTT power meter is the most efficient and hence
preferred power meter implementation.
enabling the HTTP+JSON power meter without enabling at least one value
makes no sense, so value 1 has always been treated as "always enabled".
while doing the power meter refactoring, however, a regression was
introduced that would hide the settings for value 1 in the web UI until
the power meter settings would be saved, which they cannot be due to
missing settings for value 1.