OpenDTU-old/src/PowerLimiter.cpp
2024-01-05 23:02:26 +01:00

720 lines
29 KiB
C++

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022 Thomas Basler and others
*/
#include "Battery.h"
#include "PowerMeter.h"
#include "PowerLimiter.h"
#include "Configuration.h"
#include "MqttSettings.h"
#include "NetworkSettings.h"
#include "Huawei_can.h"
#include <VictronMppt.h>
#include "MessageOutput.h"
#include <ctime>
#include <cmath>
#include <frozen/map.h>
PowerLimiterClass PowerLimiter;
void PowerLimiterClass::init(Scheduler& scheduler)
{
scheduler.addTask(_loopTask);
_loopTask.setCallback(std::bind(&PowerLimiterClass::loop, this));
_loopTask.setIterations(TASK_FOREVER);
_loopTask.enable();
}
frozen::string const& PowerLimiterClass::getStatusText(PowerLimiterClass::Status status)
{
static const frozen::string missing = "programmer error: missing status text";
static const frozen::map<Status, frozen::string, 19> texts = {
{ Status::Initializing, "initializing (should not see me)" },
{ Status::DisabledByConfig, "disabled by configuration" },
{ Status::DisabledByMqtt, "disabled by MQTT" },
{ Status::WaitingForValidTimestamp, "waiting for valid date and time to be available" },
{ Status::PowerMeterDisabled, "no power meter is configured/enabled" },
{ Status::PowerMeterTimeout, "power meter readings are outdated" },
{ Status::PowerMeterPending, "waiting for sufficiently recent power meter reading" },
{ Status::InverterInvalid, "invalid inverter selection/configuration" },
{ Status::InverterChanged, "target inverter changed" },
{ Status::InverterOffline, "inverter is offline (polling enabled? radio okay?)" },
{ Status::InverterCommandsDisabled, "inverter configuration prohibits sending commands" },
{ Status::InverterLimitPending, "waiting for a power limit command to complete" },
{ Status::InverterPowerCmdPending, "waiting for a start/stop/restart command to complete" },
{ Status::InverterDevInfoPending, "waiting for inverter device information to be available" },
{ Status::InverterStatsPending, "waiting for sufficiently recent inverter data" },
{ Status::UnconditionalSolarPassthrough, "unconditionally passing through all solar power (MQTT override)" },
{ Status::NoVeDirect, "VE.Direct disabled, connection broken, or data outdated" },
{ Status::Settling, "waiting for the system to settle" },
{ Status::Stable, "the system is stable, the last power limit is still valid" },
};
auto iter = texts.find(status);
if (iter == texts.end()) { return missing; }
return iter->second;
}
void PowerLimiterClass::announceStatus(PowerLimiterClass::Status status)
{
// this method is called with high frequency. print the status text if
// the status changed since we last printed the text of another one.
// otherwise repeat the info with a fixed interval.
if (_lastStatus == status && millis() < _lastStatusPrinted + 10 * 1000) { return; }
// after announcing once that the DPL is disabled by configuration, it
// should just be silent while it is disabled.
if (status == Status::DisabledByConfig && _lastStatus == status) { return; }
MessageOutput.printf("[%11.3f] DPL: %s\r\n",
static_cast<double>(millis())/1000, getStatusText(status).data());
_lastStatus = status;
_lastStatusPrinted = millis();
}
/**
* returns true if the inverter state was changed or is about to change, i.e.,
* if it is actually in need of a shutdown. returns false otherwise, i.e., the
* inverter is already (assumed to be) shut down.
*/
bool PowerLimiterClass::shutdown(PowerLimiterClass::Status status)
{
announceStatus(status);
if (_inverter == nullptr || !_inverter->isProducing() ||
(_shutdownTimeout > 0 && _shutdownTimeout < millis()) ) {
// we are actually (already) done with shutting down the inverter,
// or a shutdown attempt was initiated but it timed out.
_inverter = nullptr;
_shutdownTimeout = 0;
return false;
}
if (!_inverter->isReachable()) { return true; } // retry later (until timeout)
// retry shutdown for a maximum amount of time before giving up
if (_shutdownTimeout == 0) { _shutdownTimeout = millis() + 10 * 1000; }
auto lastLimitCommandState = _inverter->SystemConfigPara()->getLastLimitCommandSuccess();
if (CMD_PENDING == lastLimitCommandState) { return true; }
auto lastPowerCommandState = _inverter->PowerCommand()->getLastPowerCommandSuccess();
if (CMD_PENDING == lastPowerCommandState) { return true; }
CONFIG_T& config = Configuration.get();
commitPowerLimit(_inverter, config.PowerLimiter.LowerPowerLimit, false);
return true;
}
void PowerLimiterClass::loop()
{
CONFIG_T const& config = Configuration.get();
_verboseLogging = config.PowerLimiter.VerboseLogging;
// we know that the Hoymiles library refuses to send any message to any
// inverter until the system has valid time information. until then we can
// do nothing, not even shutdown the inverter.
struct tm timeinfo;
if (!getLocalTime(&timeinfo, 5)) {
return announceStatus(Status::WaitingForValidTimestamp);
}
if (_shutdownTimeout > 0) {
// we transition from SHUTDOWN to OFF when we know the inverter was
// shut down. until then, we retry shutting it down. in this case we
// preserve the original status that lead to the decision to shut down.
shutdown();
return;
}
if (!config.PowerLimiter.Enabled) {
shutdown(Status::DisabledByConfig);
return;
}
if (Mode::Disabled == _mode) {
shutdown(Status::DisabledByMqtt);
return;
}
std::shared_ptr<InverterAbstract> currentInverter =
Hoymiles.getInverterByPos(config.PowerLimiter.InverterId);
// in case of (newly) broken configuration, shut down
// the last inverter we worked with (if any)
if (currentInverter == nullptr) {
shutdown(Status::InverterInvalid);
return;
}
// if the DPL is supposed to manage another inverter now, we first
// shut down the previous one, if any. then we pick up the new one.
if (_inverter != nullptr && _inverter->serial() != currentInverter->serial()) {
shutdown(Status::InverterChanged);
return;
}
// update our pointer as the configuration might have changed
_inverter = currentInverter;
// data polling is disabled or the inverter is deemed offline
if (!_inverter->isReachable()) {
return announceStatus(Status::InverterOffline);
}
// sending commands to the inverter is disabled
if (!_inverter->getEnableCommands()) {
return announceStatus(Status::InverterCommandsDisabled);
}
// concerns active power commands (power limits) only (also from web app or MQTT)
auto lastLimitCommandState = _inverter->SystemConfigPara()->getLastLimitCommandSuccess();
if (CMD_PENDING == lastLimitCommandState) {
return announceStatus(Status::InverterLimitPending);
}
// concerns power commands (start, stop, restart) only (also from web app or MQTT)
auto lastPowerCommandState = _inverter->PowerCommand()->getLastPowerCommandSuccess();
if (CMD_PENDING == lastPowerCommandState) {
return announceStatus(Status::InverterPowerCmdPending);
}
// a calculated power limit will always be limited to the reported
// device's max power. that upper limit is only known after the first
// DevInfoSimpleCommand succeeded.
if (_inverter->DevInfo()->getMaxPower() <= 0) {
return announceStatus(Status::InverterDevInfoPending);
}
if (Mode::UnconditionalFullSolarPassthrough == _mode) {
// handle this mode of operation separately
return unconditionalSolarPassthrough(_inverter);
}
// the normal mode of operation requires a valid
// power meter reading to calculate a power limit
if (!config.PowerMeter.Enabled) {
shutdown(Status::PowerMeterDisabled);
return;
}
if (millis() - PowerMeter.getLastPowerMeterUpdate() > (30 * 1000)) {
shutdown(Status::PowerMeterTimeout);
return;
}
// concerns both power limits and start/stop/restart commands and is
// only updated if a respective response was received from the inverter
auto lastUpdateCmd = std::max(
_inverter->SystemConfigPara()->getLastUpdateCommand(),
_inverter->PowerCommand()->getLastUpdateCommand());
// wait for power meter and inverter stat updates after a settling phase
auto settlingEnd = lastUpdateCmd + 3 * 1000;
if (millis() < settlingEnd) { return announceStatus(Status::Settling); }
if (_inverter->Statistics()->getLastUpdate() <= settlingEnd) {
return announceStatus(Status::InverterStatsPending);
}
if (PowerMeter.getLastPowerMeterUpdate() <= settlingEnd) {
return announceStatus(Status::PowerMeterPending);
}
// since _lastCalculation and _calculationBackoffMs are initialized to
// zero, this test is passed the first time the condition is checked.
if (millis() < (_lastCalculation + _calculationBackoffMs)) {
return announceStatus(Status::Stable);
}
if (_verboseLogging) {
MessageOutput.println("[DPL::loop] ******************* ENTER **********************");
}
// Check if next inverter restart time is reached
if ((_nextInverterRestart > 1) && (_nextInverterRestart <= millis())) {
MessageOutput.println("[DPL::loop] send inverter restart");
_inverter->sendRestartControlRequest();
calcNextInverterRestart();
}
// Check if NTP time is set and next inverter restart not calculated yet
if ((config.PowerLimiter.RestartHour >= 0) && (_nextInverterRestart == 0) ) {
// check every 5 seconds
if (_nextCalculateCheck < millis()) {
struct tm timeinfo;
if (getLocalTime(&timeinfo, 5)) {
calcNextInverterRestart();
} else {
MessageOutput.println("[DPL::loop] inverter restart calculation: NTP not ready");
_nextCalculateCheck += 5000;
}
}
}
// Battery charging cycle conditions
// First we always disable discharge if the battery is empty
if (isStopThresholdReached()) {
// Disable battery discharge when empty
_batteryDischargeEnabled = false;
} else {
// UI: Solar Passthrough Enabled -> false
// Battery discharge can be enabled when start threshold is reached
if (!config.PowerLimiter.SolarPassThroughEnabled && isStartThresholdReached()) {
_batteryDischargeEnabled = true;
}
// UI: Solar Passthrough Enabled -> true && EMPTY_AT_NIGHT
if (config.PowerLimiter.SolarPassThroughEnabled && config.PowerLimiter.BatteryDrainStategy == EMPTY_AT_NIGHT) {
if(isStartThresholdReached()) {
// In this case we should only discharge the battery as long it is above startThreshold
_batteryDischargeEnabled = true;
}
else {
// In this case we should only discharge the battery when there is no sunshine
_batteryDischargeEnabled = !canUseDirectSolarPower();
}
}
// UI: Solar Passthrough Enabled -> true && EMPTY_WHEN_FULL
// Battery discharge can be enabled when start threshold is reached
if (config.PowerLimiter.SolarPassThroughEnabled && isStartThresholdReached() && config.PowerLimiter.BatteryDrainStategy == EMPTY_WHEN_FULL) {
_batteryDischargeEnabled = true;
}
}
if (_verboseLogging) {
MessageOutput.printf("[DPL::loop] battery interface %s, SoC: %d %%, StartTH: %d %%, StopTH: %d %%, SoC age: %d s\r\n",
(config.Battery.Enabled?"enabled":"disabled"),
Battery.getStats()->getSoC(),
config.PowerLimiter.BatterySocStartThreshold,
config.PowerLimiter.BatterySocStopThreshold,
Battery.getStats()->getSoCAgeSeconds());
float dcVoltage = _inverter->Statistics()->getChannelFieldValue(TYPE_DC, (ChannelNum_t)config.PowerLimiter.InverterChannelId, FLD_UDC);
MessageOutput.printf("[DPL::loop] dcVoltage: %.2f V, loadCorrectedVoltage: %.2f V, StartTH: %.2f V, StopTH: %.2f V\r\n",
dcVoltage, getLoadCorrectedVoltage(),
config.PowerLimiter.VoltageStartThreshold,
config.PowerLimiter.VoltageStopThreshold);
MessageOutput.printf("[DPL::loop] StartTH reached: %s, StopTH reached: %s, inverter %s producing\r\n",
(isStartThresholdReached()?"yes":"no"),
(isStopThresholdReached()?"yes":"no"),
(_inverter->isProducing()?"is":"is NOT"));
MessageOutput.printf("[DPL::loop] SolarPT %s, Drain Strategy: %i, canUseDirectSolarPower: %s\r\n",
(config.PowerLimiter.SolarPassThroughEnabled?"enabled":"disabled"),
config.PowerLimiter.BatteryDrainStategy, (canUseDirectSolarPower()?"yes":"no"));
MessageOutput.printf("[DPL::loop] battery discharging %s, PowerMeter: %d W, target consumption: %d W\r\n",
(_batteryDischargeEnabled?"allowed":"prevented"),
static_cast<int32_t>(round(PowerMeter.getPowerTotal())),
config.PowerLimiter.TargetPowerConsumption);
}
// Calculate and set Power Limit (NOTE: might reset _inverter to nullptr!)
int32_t newPowerLimit = calcPowerLimit(_inverter, canUseDirectSolarPower(), _batteryDischargeEnabled);
bool limitUpdated = setNewPowerLimit(_inverter, newPowerLimit);
if (_verboseLogging) {
MessageOutput.printf("[DPL::loop] ******************* Leaving PL, calculated limit: %d W, requested limit: %d W (%s)\r\n",
newPowerLimit, _lastRequestedPowerLimit,
(limitUpdated?"updated from calculated":"kept last requested"));
}
_lastCalculation = millis();
if (!limitUpdated) {
// increase polling backoff if system seems to be stable
_calculationBackoffMs = std::min<uint32_t>(1024, _calculationBackoffMs * 2);
return announceStatus(Status::Stable);
}
_calculationBackoffMs = _calculationBackoffMsDefault;
}
/**
* calculate the AC output power (limit) to set, such that the inverter uses
* the given power on its DC side, i.e., adjust the power for the inverter's
* efficiency.
*/
int32_t PowerLimiterClass::inverterPowerDcToAc(std::shared_ptr<InverterAbstract> inverter, int32_t dcPower)
{
CONFIG_T& config = Configuration.get();
float inverterEfficiencyPercent = inverter->Statistics()->getChannelFieldValue(
TYPE_AC, CH0, FLD_EFF);
// fall back to hoymiles peak efficiency as per datasheet if inverter
// is currently not producing (efficiency is zero in that case)
float inverterEfficiencyFactor = (inverterEfficiencyPercent > 0) ? inverterEfficiencyPercent/100 : 0.967;
// account for losses between solar charger and inverter (cables, junctions...)
float lossesFactor = 1.00 - static_cast<float>(config.PowerLimiter.SolarPassThroughLosses)/100;
return dcPower * inverterEfficiencyFactor * lossesFactor;
}
/**
* implements the "unconditional solar passthrough" mode of operation, which
* can currently only be set using MQTT. in this mode of operation, the
* inverter shall behave as if it was connected to the solar panels directly,
* i.e., all solar power (and only solar power) is fed to the AC side,
* independent from the power meter reading.
*/
void PowerLimiterClass::unconditionalSolarPassthrough(std::shared_ptr<InverterAbstract> inverter)
{
if (!VictronMppt.isDataValid()) {
shutdown(Status::NoVeDirect);
return;
}
int32_t solarPower = VictronMppt.getPowerOutputWatts();
setNewPowerLimit(inverter, inverterPowerDcToAc(inverter, solarPower));
announceStatus(Status::UnconditionalSolarPassthrough);
}
uint8_t PowerLimiterClass::getPowerLimiterState() {
if (_inverter == nullptr || !_inverter->isReachable()) {
return PL_UI_STATE_INACTIVE;
}
if (_inverter->isProducing() && _batteryDischargeEnabled) {
return PL_UI_STATE_USE_SOLAR_AND_BATTERY;
}
if (_inverter->isProducing() && !_batteryDischargeEnabled) {
return PL_UI_STATE_USE_SOLAR_ONLY;
}
if(!_inverter->isProducing()) {
return PL_UI_STATE_CHARGING;
}
return PL_UI_STATE_INACTIVE;
}
int32_t PowerLimiterClass::getLastRequestedPowerLimit() {
return _lastRequestedPowerLimit;
}
bool PowerLimiterClass::canUseDirectSolarPower()
{
CONFIG_T& config = Configuration.get();
if (!config.PowerLimiter.SolarPassThroughEnabled
|| isBelowStopThreshold()
|| !VictronMppt.isDataValid()) {
return false;
}
return VictronMppt.getPowerOutputWatts() >= 20; // enough power?
}
// Logic table
// | Case # | batteryDischargeEnabled | solarPowerEnabled | useFullSolarPassthrough | Result |
// | 1 | false | false | doesn't matter | PL = 0 |
// | 2 | false | true | doesn't matter | PL = Victron Power |
// | 3 | true | doesn't matter | false | PL = PowerMeter value (Battery can supply unlimited energy) |
// | 4 | true | false | true | PL = PowerMeter value |
// | 5 | true | true | true | PL = max(PowerMeter value, Victron Power) |
int32_t PowerLimiterClass::calcPowerLimit(std::shared_ptr<InverterAbstract> inverter, bool solarPowerEnabled, bool batteryDischargeEnabled)
{
CONFIG_T& config = Configuration.get();
int32_t acPower = 0;
int32_t newPowerLimit = round(PowerMeter.getPowerTotal());
if (!solarPowerEnabled && !batteryDischargeEnabled) {
// Case 1 - No energy sources available
return 0;
}
if (config.PowerLimiter.IsInverterBehindPowerMeter) {
// If the inverter the behind the power meter (part of measurement),
// the produced power of this inverter has also to be taken into account.
// We don't use FLD_PAC from the statistics, because that
// data might be too old and unreliable.
acPower = static_cast<int>(inverter->Statistics()->getChannelFieldValue(TYPE_AC, CH0, FLD_PAC));
newPowerLimit += acPower;
}
// We're not trying to hit 0 exactly but take an offset into account
// This means we never fully compensate the used power with the inverter
// Case 3
newPowerLimit -= config.PowerLimiter.TargetPowerConsumption;
// At this point we've calculated the required energy to compensate for household consumption.
// If the battery is enabled this can always be supplied since we assume that the battery can supply unlimited power
// The next step is to determine if the Solar power as provided by the Victron charger
// actually constrains or dictates another inverter power value
int32_t adjustedVictronChargePower = inverterPowerDcToAc(inverter, getSolarChargePower());
// Battery can be discharged and we should output max (Victron solar power || power meter value)
if(batteryDischargeEnabled && useFullSolarPassthrough()) {
// Case 5
newPowerLimit = newPowerLimit > adjustedVictronChargePower ? newPowerLimit : adjustedVictronChargePower;
} else {
// We check if the PSU is on and disable the Power Limiter in this case.
// The PSU should reduce power or shut down first before the Power Limiter kicks in
// The only case where this is not desired is if the battery is over the Full Solar Passthrough Threshold
// In this case the Power Limiter should start. The PSU will shutdown when the Power Limiter is active
if (HuaweiCan.getAutoPowerStatus()) {
return 0;
}
}
// We should use Victron solar power only (corrected by efficiency factor)
if (solarPowerEnabled && !batteryDischargeEnabled) {
// Case 2 - Limit power to solar power only
if (_verboseLogging) {
MessageOutput.printf("[DPL::loop] Consuming Solar Power Only -> adjustedVictronChargePower: %d W, newPowerLimit: %d W\r\n",
adjustedVictronChargePower, newPowerLimit);
}
newPowerLimit = std::min(newPowerLimit, adjustedVictronChargePower);
}
return newPowerLimit;
}
void PowerLimiterClass::commitPowerLimit(std::shared_ptr<InverterAbstract> inverter, int32_t limit, bool enablePowerProduction)
{
// disable power production as soon as possible.
// setting the power limit is less important.
if (!enablePowerProduction && inverter->isProducing()) {
MessageOutput.println("[DPL::commitPowerLimit] Stopping inverter...");
inverter->sendPowerControlRequest(false);
}
inverter->sendActivePowerControlRequest(static_cast<float>(limit),
PowerLimitControlType::AbsolutNonPersistent);
_lastRequestedPowerLimit = limit;
_lastPowerLimitMillis = millis();
// enable power production only after setting the desired limit,
// such that an older, greater limit will not cause power spikes.
if (enablePowerProduction && !inverter->isProducing()) {
MessageOutput.println("[DPL::commitPowerLimit] Starting up inverter...");
inverter->sendPowerControlRequest(true);
}
}
/**
* enforces limits and a hystersis on the requested power limit, after scaling
* the power limit to the ratio of total and producing inverter channels.
* commits the sanitized power limit. returns true if a limit update was
* committed, false otherwise.
*/
bool PowerLimiterClass::setNewPowerLimit(std::shared_ptr<InverterAbstract> inverter, int32_t newPowerLimit)
{
CONFIG_T& config = Configuration.get();
// Stop the inverter if limit is below threshold.
if (newPowerLimit < config.PowerLimiter.LowerPowerLimit) {
// the status must not change outside of loop(). this condition is
// communicated through log messages already.
return shutdown();
}
// enforce configured upper power limit
int32_t effPowerLimit = std::min(newPowerLimit, config.PowerLimiter.UpperPowerLimit);
// scale the power limit by the amount of all inverter channels devided by
// the amount of producing inverter channels. the inverters limit each of
// the n channels to 1/n of the total power limit. scaling the power limit
// ensures the total inverter output is what we are asking for.
std::list<ChannelNum_t> dcChnls = inverter->Statistics()->getChannelsByType(TYPE_DC);
int dcProdChnls = 0, dcTotalChnls = dcChnls.size();
for (auto& c : dcChnls) {
if (inverter->Statistics()->getChannelFieldValue(TYPE_DC, c, FLD_PDC) > 2.0) {
dcProdChnls++;
}
}
if ((dcProdChnls > 0) && (dcProdChnls != dcTotalChnls)) {
MessageOutput.printf("[DPL::setNewPowerLimit] %d channels total, %d producing channels, scaling power limit\r\n",
dcTotalChnls, dcProdChnls);
effPowerLimit = round(effPowerLimit * static_cast<float>(dcTotalChnls) / dcProdChnls);
}
effPowerLimit = std::min<int32_t>(effPowerLimit, inverter->DevInfo()->getMaxPower());
// Check if the new value is within the limits of the hysteresis
auto diff = std::abs(effPowerLimit - _lastRequestedPowerLimit);
auto hysteresis = config.PowerLimiter.TargetPowerConsumptionHysteresis;
// (re-)send power limit in case the last was sent a long time ago. avoids
// staleness in case a power limit update was not received by the inverter.
auto ageMillis = millis() - _lastPowerLimitMillis;
if (diff < hysteresis && ageMillis < 60 * 1000) {
if (_verboseLogging) {
MessageOutput.printf("[DPL::setNewPowerLimit] requested: %d W, last limit: %d W, diff: %d W, hysteresis: %d W, age: %ld ms\r\n",
newPowerLimit, _lastRequestedPowerLimit, diff, hysteresis, ageMillis);
}
return false;
}
if (_verboseLogging) {
MessageOutput.printf("[DPL::setNewPowerLimit] requested: %d W, (re-)sending limit: %d W\r\n",
newPowerLimit, effPowerLimit);
}
commitPowerLimit(inverter, effPowerLimit, true);
return true;
}
int32_t PowerLimiterClass::getSolarChargePower()
{
if (!canUseDirectSolarPower()) {
return 0;
}
return VictronMppt.getPowerOutputWatts();
}
float PowerLimiterClass::getLoadCorrectedVoltage()
{
if (!_inverter) {
// there should be no need to call this method if no target inverter is known
MessageOutput.println("DPL getLoadCorrectedVoltage: no inverter (programmer error)");
return 0.0;
}
CONFIG_T& config = Configuration.get();
auto channel = static_cast<ChannelNum_t>(config.PowerLimiter.InverterChannelId);
float acPower = _inverter->Statistics()->getChannelFieldValue(TYPE_AC, CH0, FLD_PAC);
float dcVoltage = _inverter->Statistics()->getChannelFieldValue(TYPE_DC, channel, FLD_UDC);
if (dcVoltage <= 0.0) {
return 0.0;
}
return dcVoltage + (acPower * config.PowerLimiter.VoltageLoadCorrectionFactor);
}
bool PowerLimiterClass::testThreshold(float socThreshold, float voltThreshold,
std::function<bool(float, float)> compare)
{
CONFIG_T& config = Configuration.get();
// prefer SoC provided through battery interface
if (config.Battery.Enabled && socThreshold > 0.0
&& Battery.getStats()->isValid()
&& Battery.getStats()->getSoCAgeSeconds() < 60) {
return compare(Battery.getStats()->getSoC(), socThreshold);
}
// use voltage threshold as fallback
if (voltThreshold <= 0.0) { return false; }
return compare(getLoadCorrectedVoltage(), voltThreshold);
}
bool PowerLimiterClass::isStartThresholdReached()
{
CONFIG_T& config = Configuration.get();
return testThreshold(
config.PowerLimiter.BatterySocStartThreshold,
config.PowerLimiter.VoltageStartThreshold,
[](float a, float b) -> bool { return a >= b; }
);
}
bool PowerLimiterClass::isStopThresholdReached()
{
CONFIG_T& config = Configuration.get();
return testThreshold(
config.PowerLimiter.BatterySocStopThreshold,
config.PowerLimiter.VoltageStopThreshold,
[](float a, float b) -> bool { return a <= b; }
);
}
bool PowerLimiterClass::isBelowStopThreshold()
{
CONFIG_T& config = Configuration.get();
return testThreshold(
config.PowerLimiter.BatterySocStopThreshold,
config.PowerLimiter.VoltageStopThreshold,
[](float a, float b) -> bool { return a < b; }
);
}
/// @brief calculate next inverter restart in millis
void PowerLimiterClass::calcNextInverterRestart()
{
CONFIG_T& config = Configuration.get();
// first check if restart is configured at all
if (config.PowerLimiter.RestartHour < 0) {
_nextInverterRestart = 1;
MessageOutput.println("[DPL::calcNextInverterRestart] _nextInverterRestart disabled");
return;
}
// read time from timeserver, if time is not synced then return
struct tm timeinfo;
if (getLocalTime(&timeinfo, 5)) {
// calculation first step is offset to next restart in minutes
uint16_t dayMinutes = timeinfo.tm_hour * 60 + timeinfo.tm_min;
uint16_t targetMinutes = config.PowerLimiter.RestartHour * 60;
if (config.PowerLimiter.RestartHour > timeinfo.tm_hour) {
// next restart is on the same day
_nextInverterRestart = targetMinutes - dayMinutes;
} else {
// next restart is on next day
_nextInverterRestart = 1440 - dayMinutes + targetMinutes;
}
if (_verboseLogging) {
MessageOutput.printf("[DPL::calcNextInverterRestart] Localtime read %d %d / configured RestartHour %d\r\n", timeinfo.tm_hour, timeinfo.tm_min, config.PowerLimiter.RestartHour);
MessageOutput.printf("[DPL::calcNextInverterRestart] dayMinutes %d / targetMinutes %d\r\n", dayMinutes, targetMinutes);
MessageOutput.printf("[DPL::calcNextInverterRestart] next inverter restart in %d minutes\r\n", _nextInverterRestart);
}
// then convert unit for next restart to milliseconds and add current uptime millis()
_nextInverterRestart *= 60000;
_nextInverterRestart += millis();
} else {
MessageOutput.println("[DPL::calcNextInverterRestart] getLocalTime not successful, no calculation");
_nextInverterRestart = 0;
}
MessageOutput.printf("[DPL::calcNextInverterRestart] _nextInverterRestart @ %d millis\r\n", _nextInverterRestart);
}
bool PowerLimiterClass::useFullSolarPassthrough()
{
CONFIG_T& config = Configuration.get();
// We only do full solar PT if general solar PT is enabled
if(!config.PowerLimiter.SolarPassThroughEnabled) {
return false;
}
if (testThreshold(config.PowerLimiter.FullSolarPassThroughSoc,
config.PowerLimiter.FullSolarPassThroughStartVoltage,
[](float a, float b) -> bool { return a >= b; })) {
_fullSolarPassThroughEnabled = true;
}
if (testThreshold(config.PowerLimiter.FullSolarPassThroughSoc,
config.PowerLimiter.FullSolarPassThroughStopVoltage,
[](float a, float b) -> bool { return a < b; })) {
_fullSolarPassThroughEnabled = false;
}
return _fullSolarPassThroughEnabled;
}