OpenDTU-old/src/PowerLimiter.cpp
2023-04-07 18:26:44 +02:00

324 lines
14 KiB
C++

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022 Thomas Basler and others
*/
#include "Battery.h"
#include "PowerMeter.h"
#include "PowerLimiter.h"
#include "Configuration.h"
#include "MqttSettings.h"
#include "NetworkSettings.h"
#include <VeDirectFrameHandler.h>
#include "MessageOutput.h"
#include <ctime>
PowerLimiterClass PowerLimiter;
void PowerLimiterClass::init()
{
}
void PowerLimiterClass::loop()
{
CONFIG_T& config = Configuration.get();
if (!config.PowerLimiter_Enabled
|| !config.PowerMeter_Enabled
|| !Hoymiles.getRadio()->isIdle()
|| (millis() - _lastCommandSent) < (config.PowerLimiter_Interval * 1000)
|| (millis() - _lastLoop) < (config.PowerLimiter_Interval * 1000)) {
if (!config.PowerLimiter_Enabled)
_plState = STATE_DISCOVER; // ensure STATE_DISCOVER is set, if PowerLimiter will be enabled.
return;
}
_lastLoop = millis();
std::shared_ptr<InverterAbstract> inverter = Hoymiles.getInverterByPos(config.PowerLimiter_InverterId);
if (inverter == nullptr || !inverter->isReachable()) {
return;
}
float dcVoltage = inverter->Statistics()->getChannelFieldValue(TYPE_DC, (ChannelNum_t) config.PowerLimiter_InverterChannelId, FLD_UDC);
float acPower = inverter->Statistics()->getChannelFieldValue(TYPE_AC, (ChannelNum_t) config.PowerLimiter_InverterChannelId, FLD_PAC);
float correctedDcVoltage = dcVoltage + (acPower * config.PowerLimiter_VoltageLoadCorrectionFactor);
// If the last inverter update is too old, don't do anything.
// If the last inverter update was before the last limit updated, don't do anything.
// Also give the Power meter 3 seconds time to recognize power changes because of the last set limit
// and also because the Hoymiles MPPT might not react immediately.
if ((millis() - inverter->Statistics()->getLastUpdate()) > 10000
|| inverter->Statistics()->getLastUpdate() <= _lastLimitSetTime
|| PowerMeter.getLastPowerMeterUpdate() <= (_lastLimitSetTime + 3000)) {
return;
}
if (millis() - PowerMeter.getLastPowerMeterUpdate() < (30 * 1000)) {
MessageOutput.printf("[PowerLimiterClass::loop] dcVoltage: %.2f Voltage Start Threshold: %.2f Voltage Stop Threshold: %.2f inverter->isProducing(): %d\r\n",
dcVoltage, config.PowerLimiter_VoltageStartThreshold, config.PowerLimiter_VoltageStopThreshold, inverter->isProducing());
}
while(true) {
switch(_plState) {
case STATE_DISCOVER:
if (!inverter->isProducing() || isStopThresholdReached(inverter)) {
_plState = STATE_OFF;
}
else if (canUseDirectSolarPower()) {
_plState = STATE_CONSUME_SOLAR_POWER_ONLY;
}
else {
_plState = STATE_NORMAL_OPERATION;
}
break;
case STATE_OFF:
// if on turn off
if (inverter->isProducing()) {
MessageOutput.printf("[PowerLimiterClass::loop] DC voltage: %.2f Corrected DC voltage: %.2f...\r\n",
dcVoltage, correctedDcVoltage);
setNewPowerLimit(inverter, -1);
return;
}
// do nothing if battery is empty
if (isStopThresholdReached(inverter))
return;
// check for possible state changes
if (canUseDirectSolarPower()) {
_plState = STATE_CONSUME_SOLAR_POWER_ONLY;
}
if (isStartThresholdReached(inverter)) {
_plState = STATE_NORMAL_OPERATION;
}
return;
break;
case STATE_CONSUME_SOLAR_POWER_ONLY: {
int32_t newPowerLimit = calcPowerLimit(inverter, true);
if (isStopThresholdReached(inverter)) {
_plState = STATE_OFF;
break;
}
if (isStartThresholdReached(inverter)) {
_plState = STATE_NORMAL_OPERATION;
break;
}
if (!canUseDirectSolarPower()) {
if (config.PowerLimiter_BatteryDrainStategy == EMPTY_AT_NIGHT)
_plState = STATE_NORMAL_OPERATION;
else
_plState = STATE_OFF;
break;
}
setNewPowerLimit(inverter, newPowerLimit);
return;
break;
}
case STATE_NORMAL_OPERATION: {
int32_t newPowerLimit = calcPowerLimit(inverter, false);
if (isStopThresholdReached(inverter)) {
_plState = STATE_OFF;
break;
}
if (!isStartThresholdReached(inverter) && canUseDirectSolarPower() && (config.PowerLimiter_BatteryDrainStategy == EMPTY_AT_NIGHT)) {
_plState = STATE_CONSUME_SOLAR_POWER_ONLY;
break;
}
// check if grid power consumption is not within the upper and lower threshold of the target consumption
if (newPowerLimit >= (config.PowerLimiter_TargetPowerConsumption - config.PowerLimiter_TargetPowerConsumptionHysteresis) &&
newPowerLimit <= (config.PowerLimiter_TargetPowerConsumption + config.PowerLimiter_TargetPowerConsumptionHysteresis) &&
_lastRequestedPowerLimit >= (config.PowerLimiter_TargetPowerConsumption - config.PowerLimiter_TargetPowerConsumptionHysteresis) &&
_lastRequestedPowerLimit <= (config.PowerLimiter_TargetPowerConsumption + config.PowerLimiter_TargetPowerConsumptionHysteresis) ) {
return;
}
setNewPowerLimit(inverter, newPowerLimit);;
return;
break;
}
}
}
}
plStates PowerLimiterClass::getPowerLimiterState() {
return _plState;
}
int32_t PowerLimiterClass::getLastRequestedPowewrLimit() {
return _lastRequestedPowerLimit;
}
bool PowerLimiterClass::canUseDirectSolarPower()
{
CONFIG_T& config = Configuration.get();
if (!config.PowerLimiter_SolarPassTroughEnabled
|| !config.Vedirect_Enabled) {
return false;
}
if (VeDirect.veFrame.PPV < 20) {
// Not enough power
return false;
}
return true;
}
int32_t PowerLimiterClass::calcPowerLimit(std::shared_ptr<InverterAbstract> inverter, bool consumeSolarPowerOnly)
{
CONFIG_T& config = Configuration.get();
int32_t newPowerLimit = round(PowerMeter.getPowerTotal());
// Safety check, return on too old power meter values
if ((millis() - PowerMeter.getLastPowerMeterUpdate()) > (30 * 1000)) {
// If the power meter values are older than 30 seconds,
// set the limit to config.PowerLimiter_LowerPowerLimit for safety reasons.
MessageOutput.println("[PowerLimiterClass::loop] Power Meter values too old. Using lower limit");
return config.PowerLimiter_LowerPowerLimit;
}
// check if grid power consumption is within the limits of the target consumption + hysteresis
if (newPowerLimit >= (config.PowerLimiter_TargetPowerConsumption - config.PowerLimiter_TargetPowerConsumptionHysteresis) &&
newPowerLimit <= (config.PowerLimiter_TargetPowerConsumption + config.PowerLimiter_TargetPowerConsumptionHysteresis)) {
// The values have not changed much. We just use the old setting
MessageOutput.println("[PowerLimiterClass::loop] reusing old limit");
return _lastRequestedPowerLimit;
}
if (config.PowerLimiter_IsInverterBehindPowerMeter) {
// If the inverter the behind the power meter (part of measurement),
// the produced power of this inverter has also to be taken into account.
// We don't use FLD_PAC from the statistics, because that
// data might be too old and unrelieable.
float acPower = inverter->Statistics()->getChannelFieldValue(TYPE_AC, (ChannelNum_t) config.PowerLimiter_InverterChannelId, FLD_PAC);
newPowerLimit += static_cast<int>(acPower);
}
float efficency = inverter->Statistics()->getChannelFieldValue(TYPE_AC, (ChannelNum_t) config.PowerLimiter_InverterChannelId, FLD_EFF);
int32_t victronChargePower = this->getDirectSolarPower();
int32_t adjustedVictronChargePower = victronChargePower * (efficency > 0.0 ? (efficency / 100.0) : 1.0); // if inverter is off, use 1.0
MessageOutput.printf("[PowerLimiterClass::loop] victronChargePower: %d, efficiency: %.2f, consumeSolarPowerOnly: %s, powerConsumption: %d \r\n",
victronChargePower, efficency, consumeSolarPowerOnly ? "true" : "false", newPowerLimit);
// We're not trying to hit 0 exactly but take an offset into account
// This means we never fully compensate the used power with the inverter
newPowerLimit -= config.PowerLimiter_TargetPowerConsumption;
int32_t upperPowerLimit = config.PowerLimiter_UpperPowerLimit;
if (consumeSolarPowerOnly && (upperPowerLimit > adjustedVictronChargePower)) {
// Battery voltage too low, use Victron solar power (corrected by efficency factor) only
upperPowerLimit = adjustedVictronChargePower;
}
if (newPowerLimit > upperPowerLimit)
newPowerLimit = upperPowerLimit;
MessageOutput.printf("[PowerLimiterClass::loop] newPowerLimit: %d\r\n", newPowerLimit);
return newPowerLimit;
}
void PowerLimiterClass::setNewPowerLimit(std::shared_ptr<InverterAbstract> inverter, int32_t newPowerLimit)
{
CONFIG_T& config = Configuration.get();
// Start the inverter in case it's inactive and if the requested power is high enough
if (!inverter->isProducing() && newPowerLimit > config.PowerLimiter_LowerPowerLimit) {
MessageOutput.println("[PowerLimiterClass::loop] Starting up inverter...");
inverter->sendPowerControlRequest(Hoymiles.getRadio(), true);
_lastCommandSent = millis();
}
// Stop the inverter if limit is below threshold.
// We'll also set the power limit to the lower value in this case
if (newPowerLimit < config.PowerLimiter_LowerPowerLimit) {
if (inverter->isProducing()) {
MessageOutput.println("[PowerLimiterClass::loop] Stopping inverter...");
inverter->sendPowerControlRequest(Hoymiles.getRadio(), false);
_lastCommandSent = millis();
}
newPowerLimit = config.PowerLimiter_LowerPowerLimit;
}
// Set the actual limit. We'll only do this is if the limit is in the right range
// and differs from the last requested value
if( _lastRequestedPowerLimit != newPowerLimit &&
/* newPowerLimit > config.PowerLimiter_LowerPowerLimit && --> This will always be true given the check above, kept for code readability */
newPowerLimit < config.PowerLimiter_UpperPowerLimit ) {
MessageOutput.printf("[PowerLimiterClass::loop] Limit Non-Persistent: %d W\r\n", newPowerLimit);
inverter->sendActivePowerControlRequest(Hoymiles.getRadio(), newPowerLimit, PowerLimitControlType::AbsolutNonPersistent);
_lastRequestedPowerLimit = newPowerLimit;
// wait for the next inverter update (+ 3 seconds to make sure the limit got applied)
_lastLimitSetTime = millis();
}
}
int32_t PowerLimiterClass::getDirectSolarPower()
{
if (!canUseDirectSolarPower()) {
return 0;
}
return VeDirect.veFrame.PPV;
}
float PowerLimiterClass::getLoadCorrectedVoltage(std::shared_ptr<InverterAbstract> inverter)
{
CONFIG_T& config = Configuration.get();
float acPower = inverter->Statistics()->getChannelFieldValue(TYPE_AC, (ChannelNum_t) config.PowerLimiter_InverterChannelId, FLD_PAC);
float dcVoltage = inverter->Statistics()->getChannelFieldValue(TYPE_DC, (ChannelNum_t) config.PowerLimiter_InverterChannelId, FLD_UDC);
if (dcVoltage <= 0.0) {
return 0.0;
}
return dcVoltage + (acPower * config.PowerLimiter_VoltageLoadCorrectionFactor);
}
bool PowerLimiterClass::isStartThresholdReached(std::shared_ptr<InverterAbstract> inverter)
{
CONFIG_T& config = Configuration.get();
// Check if the Battery interface is enabled and the SOC start threshold is reached
if (config.Battery_Enabled
&& config.PowerLimiter_BatterySocStartThreshold > 0.0
&& (millis() - Battery.stateOfChargeLastUpdate) < 60000
&& Battery.stateOfCharge >= config.PowerLimiter_BatterySocStartThreshold) {
return true;
}
// Otherwise we use the voltage threshold
if (config.PowerLimiter_VoltageStartThreshold <= 0.0) {
return false;
}
float correctedDcVoltage = getLoadCorrectedVoltage(inverter);
return correctedDcVoltage >= config.PowerLimiter_VoltageStartThreshold;
}
bool PowerLimiterClass::isStopThresholdReached(std::shared_ptr<InverterAbstract> inverter)
{
CONFIG_T& config = Configuration.get();
// Check if the Battery interface is enabled and the SOC stop threshold is reached
if (config.Battery_Enabled
&& config.PowerLimiter_BatterySocStopThreshold > 0.0
&& (millis() - Battery.stateOfChargeLastUpdate) < 60000
&& Battery.stateOfCharge <= config.PowerLimiter_BatterySocStopThreshold) {
return true;
}
// Otherwise we use the voltage threshold
if (config.PowerLimiter_VoltageStopThreshold <= 0.0) {
return false;
}
float correctedDcVoltage = getLoadCorrectedVoltage(inverter);
return correctedDcVoltage <= config.PowerLimiter_VoltageStopThreshold;
}