OpenDTU-old/src/Led_Single.cpp
2024-01-20 11:24:57 +01:00

158 lines
4.1 KiB
C++

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2023-2024 Thomas Basler and others
*/
#include "Led_Single.h"
#include "Configuration.h"
#include "Datastore.h"
#include "MqttSettings.h"
#include "NetworkSettings.h"
#include "PinMapping.h"
#include <Hoymiles.h>
LedSingleClass LedSingle;
/*
The table is calculated using the following formula
(See https://www.mikrocontroller.net/articles/LED-Fading)
a = Step count: 101 --> 0 - 100
b = PWM resolution: 256: 0 - 255
y = Calculated value of index x:
y = 0 if x = 0
y = pow(2, log2(b-1) * (x+1) / a) if x > 0
*/
const uint8_t pwmTable[] = {
0,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 4, 4, 4, 4, 4, 5, 5, 5, 5,
6, 6, 6, 7, 7, 8, 8, 8, 9, 9,
10, 11, 11, 12, 12, 13, 14, 15, 16, 16,
17, 18, 19, 20, 22, 23, 24, 25, 27, 28,
30, 32, 33, 35, 37, 39, 42, 44, 47, 49,
52, 55, 58, 61, 65, 68, 72, 76, 81, 85,
90, 95, 100, 106, 112, 118, 125, 132, 139, 147,
156, 164, 174, 183, 194, 205, 216, 228, 241, 255
};
#define LED_OFF 0
LedSingleClass::LedSingleClass()
: _setTask(LEDSINGLE_UPDATE_INTERVAL * TASK_MILLISECOND, TASK_FOREVER, std::bind(&LedSingleClass::setLoop, this))
, _outputTask(TASK_IMMEDIATE, TASK_FOREVER, std::bind(&LedSingleClass::outputLoop, this))
{
}
void LedSingleClass::init(Scheduler& scheduler)
{
bool ledActive = false;
_blinkTimeout.set(500);
turnAllOn();
const auto& pin = PinMapping.get();
for (uint8_t i = 0; i < PINMAPPING_LED_COUNT; i++) {
if (pin.led[i] >= 0) {
pinMode(pin.led[i], OUTPUT);
setLed(i, false);
ledActive = true;
}
_ledMode[i] = LedState_t::Off;
}
if (ledActive) {
scheduler.addTask(_outputTask);
_outputTask.enable();
scheduler.addTask(_setTask);
_setTask.enable();
}
}
void LedSingleClass::setLoop()
{
if (_allMode == LedState_t::On) {
const CONFIG_T& config = Configuration.get();
// Update network status
_ledMode[0] = LedState_t::Off;
if (NetworkSettings.isConnected()) {
_ledMode[0] = LedState_t::Blink;
}
struct tm timeinfo;
if (getLocalTime(&timeinfo, 5) && (!config.Mqtt.Enabled || (config.Mqtt.Enabled && MqttSettings.getConnected()))) {
_ledMode[0] = LedState_t::On;
}
// Update inverter status
_ledMode[1] = LedState_t::Off;
if (Hoymiles.getNumInverters() && Datastore.getIsAtLeastOnePollEnabled()) {
// set LED status
if (Datastore.getIsAllEnabledReachable() && Datastore.getIsAllEnabledProducing()) {
_ledMode[1] = LedState_t::On;
}
if (Datastore.getIsAllEnabledReachable() && !Datastore.getIsAllEnabledProducing()) {
_ledMode[1] = LedState_t::Blink;
}
}
} else if (_allMode == LedState_t::Off) {
_ledMode[0] = LedState_t::Off;
_ledMode[1] = LedState_t::Off;
}
}
void LedSingleClass::outputLoop()
{
for (uint8_t i = 0; i < PINMAPPING_LED_COUNT; i++) {
switch (_ledMode[i]) {
case LedState_t::Off:
setLed(i, false);
break;
case LedState_t::On:
setLed(i, true);
break;
case LedState_t::Blink:
if (_blinkTimeout.occured()) {
setLed(i, !_ledStateCurrent[i]);
_blinkTimeout.reset();
}
break;
}
}
}
void LedSingleClass::setLed(const uint8_t ledNo, const bool ledState)
{
const auto& pin = PinMapping.get();
const auto& config = Configuration.get();
if (pin.led[ledNo] < 0) {
return;
}
const uint32_t currentPWM = ledcRead(analogGetChannel(pin.led[ledNo]));
const uint32_t targetPWM = ledState ? pwmTable[config.Led_Single[ledNo].Brightness] : LED_OFF;
if (currentPWM == targetPWM) {
return;
}
analogWrite(pin.led[ledNo], targetPWM);
_ledStateCurrent[ledNo] = ledState;
}
void LedSingleClass::turnAllOff()
{
_allMode = LedState_t::Off;
}
void LedSingleClass::turnAllOn()
{
_allMode = LedState_t::On;
}