OpenDTU-old/src/Huawei_can.cpp
2024-11-17 21:43:27 +01:00

520 lines
18 KiB
C++

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2023 Malte Schmidt and others
*/
#include "Battery.h"
#include "Huawei_can.h"
#include "MessageOutput.h"
#include "PowerMeter.h"
#include "PowerLimiter.h"
#include "Configuration.h"
#include "Battery.h"
#include "SpiManager.h"
#include <mcp_can.h>
#include <freertos/FreeRTOS.h>
#include <freertos/semphr.h>
#include <freertos/task.h>
#include <algorithm>
#include <math.h>
HuaweiCanClass HuaweiCan;
HuaweiCanCommClass HuaweiCanComm;
// *******************************************************
// Huawei CAN Communication
// *******************************************************
// Using a C function to avoid static C++ member
void HuaweiCanCommunicationTask(void* parameter) {
for( ;; ) {
HuaweiCanComm.loop();
yield();
}
}
bool HuaweiCanCommClass::init(uint8_t huawei_miso, uint8_t huawei_mosi, uint8_t huawei_clk,
uint8_t huawei_irq, uint8_t huawei_cs, uint32_t frequency) {
auto spi_bus = SpiManagerInst.claim_bus_arduino();
if (!spi_bus) { return false; }
SPI = new SPIClass(*spi_bus);
SPI->begin(huawei_clk, huawei_miso, huawei_mosi, huawei_cs);
pinMode(huawei_cs, OUTPUT);
digitalWrite(huawei_cs, HIGH);
pinMode(huawei_irq, INPUT_PULLUP);
_huaweiIrq = huawei_irq;
auto mcp_frequency = MCP_8MHZ;
if (16000000UL == frequency) { mcp_frequency = MCP_16MHZ; }
else if (8000000UL != frequency) {
MessageOutput.printf("Huawei CAN: unknown frequency %d Hz, using 8 MHz\r\n", mcp_frequency);
}
_CAN = new MCP_CAN(SPI, huawei_cs);
if (!_CAN->begin(MCP_STDEXT, CAN_125KBPS, mcp_frequency) == CAN_OK) {
return false;
}
const uint32_t myMask = 0xFFFFFFFF; // Look at all incoming bits and...
const uint32_t myFilter = 0x1081407F; // filter for this message only
_CAN->init_Mask(0, 1, myMask);
_CAN->init_Filt(0, 1, myFilter);
_CAN->init_Mask(1, 1, myMask);
// Change to normal mode to allow messages to be transmitted
_CAN->setMode(MCP_NORMAL);
return true;
}
// Public methods need to obtain semaphore
void HuaweiCanCommClass::loop()
{
std::lock_guard<std::mutex> lock(_mutex);
INT32U rxId;
unsigned char len = 0;
unsigned char rxBuf[8];
uint8_t i;
if (!digitalRead(_huaweiIrq)) {
// If CAN_INT pin is low, read receive buffer
_CAN->readMsgBuf(&rxId, &len, rxBuf); // Read data: len = data length, buf = data byte(s)
if((rxId & 0x80000000) == 0x80000000) { // Determine if ID is standard (11 bits) or extended (29 bits)
if ((rxId & 0x1FFFFFFF) == 0x1081407F && len == 8) {
uint32_t value = __bswap32(* reinterpret_cast<uint32_t*> (rxBuf + 4));
// Input power 0x70, Input frequency 0x71, Input current 0x72
// Output power 0x73, Efficiency 0x74, Output Voltage 0x75 and Output Current 0x76
if(rxBuf[1] >= 0x70 && rxBuf[1] <= 0x76 ) {
_recValues[rxBuf[1] - 0x70] = value;
}
// Input voltage
if(rxBuf[1] == 0x78 ) {
_recValues[HUAWEI_INPUT_VOLTAGE_IDX] = value;
}
// Output Temperature
if(rxBuf[1] == 0x7F ) {
_recValues[HUAWEI_OUTPUT_TEMPERATURE_IDX] = value;
}
// Input Temperature 0x80, Output Current 1 0x81 and Output Current 2 0x82
if(rxBuf[1] >= 0x80 && rxBuf[1] <= 0x82 ) {
_recValues[rxBuf[1] - 0x80 + HUAWEI_INPUT_TEMPERATURE_IDX] = value;
}
// This is the last value that is send
if(rxBuf[1] == 0x81) {
_completeUpdateReceived = true;
}
}
}
// Other emitted codes not handled here are: 0x1081407E (Ack), 0x1081807E (Ack Frame), 0x1081D27F (Description), 0x1001117E (Whr meter), 0x100011FE (unclear), 0x108111FE (output enabled), 0x108081FE (unclear). See:
// https://github.com/craigpeacock/Huawei_R4850G2_CAN/blob/main/r4850.c
// https://www.beyondlogic.org/review-huawei-r4850g2-power-supply-53-5vdc-3kw/
}
// Transmit values
for (i = 0; i < HUAWEI_OFFLINE_CURRENT; i++) {
if ( _hasNewTxValue[i] == true) {
uint8_t data[8] = {0x01, i, 0x00, 0x00, 0x00, 0x00, (uint8_t)((_txValues[i] & 0xFF00) >> 8), (uint8_t)(_txValues[i] & 0xFF)};
// Send extended message
byte sndStat = _CAN->sendMsgBuf(0x108180FE, 1, 8, data);
if (sndStat == CAN_OK) {
_hasNewTxValue[i] = false;
} else {
_errorCode |= HUAWEI_ERROR_CODE_TX;
}
}
}
if (_nextRequestMillis < millis()) {
sendRequest();
_nextRequestMillis = millis() + HUAWEI_DATA_REQUEST_INTERVAL_MS;
}
}
uint32_t HuaweiCanCommClass::getParameterValue(uint8_t parameter)
{
std::lock_guard<std::mutex> lock(_mutex);
uint32_t v = 0;
if (parameter < HUAWEI_OUTPUT_CURRENT1_IDX) {
v = _recValues[parameter];
}
return v;
}
bool HuaweiCanCommClass::gotNewRxDataFrame(bool clear)
{
std::lock_guard<std::mutex> lock(_mutex);
bool b = false;
b = _completeUpdateReceived;
if (clear) {
_completeUpdateReceived = false;
}
return b;
}
uint8_t HuaweiCanCommClass::getErrorCode(bool clear)
{
std::lock_guard<std::mutex> lock(_mutex);
uint8_t e = 0;
e = _errorCode;
if (clear) {
_errorCode = 0;
}
return e;
}
void HuaweiCanCommClass::setParameterValue(uint16_t in, uint8_t parameterType)
{
std::lock_guard<std::mutex> lock(_mutex);
if (parameterType < HUAWEI_OFFLINE_CURRENT) {
_txValues[parameterType] = in;
_hasNewTxValue[parameterType] = true;
}
}
// Private methods
// Requests current values from Huawei unit. Response is handled in onReceive
void HuaweiCanCommClass::sendRequest()
{
uint8_t data[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
//Send extended message
byte sndStat = _CAN->sendMsgBuf(0x108040FE, 1, 8, data);
if(sndStat != CAN_OK) {
_errorCode |= HUAWEI_ERROR_CODE_RX;
}
}
// *******************************************************
// Huawei CAN Controller
// *******************************************************
void HuaweiCanClass::init(Scheduler& scheduler, uint8_t huawei_miso, uint8_t huawei_mosi, uint8_t huawei_clk, uint8_t huawei_irq, uint8_t huawei_cs, uint8_t huawei_power)
{
scheduler.addTask(_loopTask);
_loopTask.setCallback(std::bind(&HuaweiCanClass::loop, this));
_loopTask.setIterations(TASK_FOREVER);
_loopTask.enable();
this->updateSettings(huawei_miso, huawei_mosi, huawei_clk, huawei_irq, huawei_cs, huawei_power);
}
void HuaweiCanClass::updateSettings(uint8_t huawei_miso, uint8_t huawei_mosi, uint8_t huawei_clk, uint8_t huawei_irq, uint8_t huawei_cs, uint8_t huawei_power)
{
if (_initialized) {
return;
}
const CONFIG_T& config = Configuration.get();
if (!config.Huawei.Enabled) {
return;
}
if (!HuaweiCanComm.init(huawei_miso, huawei_mosi, huawei_clk, huawei_irq, huawei_cs, config.Huawei.CAN_Controller_Frequency)) {
MessageOutput.println("[HuaweiCanClass::init] Error Initializing Huawei CAN communication...");
return;
};
pinMode(huawei_power, OUTPUT);
digitalWrite(huawei_power, HIGH);
_huaweiPower = huawei_power;
if (config.Huawei.Auto_Power_Enabled) {
_mode = HUAWEI_MODE_AUTO_INT;
}
xTaskCreate(HuaweiCanCommunicationTask, "HUAWEI_CAN_0", 2048/*stack size*/,
NULL/*params*/, 0/*prio*/, &_HuaweiCanCommunicationTaskHdl);
MessageOutput.println("[HuaweiCanClass::init] MCP2515 Initialized Successfully!");
_initialized = true;
}
RectifierParameters_t * HuaweiCanClass::get()
{
return &_rp;
}
void HuaweiCanClass::processReceivedParameters()
{
_rp.input_power = HuaweiCanComm.getParameterValue(HUAWEI_INPUT_POWER_IDX) / 1024.0;
_rp.input_frequency = HuaweiCanComm.getParameterValue(HUAWEI_INPUT_FREQ_IDX) / 1024.0;
_rp.input_current = HuaweiCanComm.getParameterValue(HUAWEI_INPUT_CURRENT_IDX) / 1024.0;
_rp.output_power = HuaweiCanComm.getParameterValue(HUAWEI_OUTPUT_POWER_IDX) / 1024.0;
_rp.efficiency = HuaweiCanComm.getParameterValue(HUAWEI_EFFICIENCY_IDX) / 1024.0;
_rp.output_voltage = HuaweiCanComm.getParameterValue(HUAWEI_OUTPUT_VOLTAGE_IDX) / 1024.0;
_rp.max_output_current = static_cast<float>(HuaweiCanComm.getParameterValue(HUAWEI_OUTPUT_CURRENT_MAX_IDX)) / MAX_CURRENT_MULTIPLIER;
_rp.input_voltage = HuaweiCanComm.getParameterValue(HUAWEI_INPUT_VOLTAGE_IDX) / 1024.0;
_rp.output_temp = HuaweiCanComm.getParameterValue(HUAWEI_OUTPUT_TEMPERATURE_IDX) / 1024.0;
_rp.input_temp = HuaweiCanComm.getParameterValue(HUAWEI_INPUT_TEMPERATURE_IDX) / 1024.0;
_rp.output_current = HuaweiCanComm.getParameterValue(HUAWEI_OUTPUT_CURRENT_IDX) / 1024.0;
if (HuaweiCanComm.gotNewRxDataFrame(true)) {
_lastUpdateReceivedMillis = millis();
}
}
void HuaweiCanClass::loop()
{
const CONFIG_T& config = Configuration.get();
if (!config.Huawei.Enabled || !_initialized) {
return;
}
bool verboseLogging = config.Huawei.VerboseLogging;
processReceivedParameters();
uint8_t com_error = HuaweiCanComm.getErrorCode(true);
if (com_error & HUAWEI_ERROR_CODE_RX) {
MessageOutput.println("[HuaweiCanClass::loop] Data request error");
}
if (com_error & HUAWEI_ERROR_CODE_TX) {
MessageOutput.println("[HuaweiCanClass::loop] Data set error");
}
// Print updated data
if (HuaweiCanComm.gotNewRxDataFrame(false) && verboseLogging) {
MessageOutput.printf("[HuaweiCanClass::loop] In: %.02fV, %.02fA, %.02fW\n", _rp.input_voltage, _rp.input_current, _rp.input_power);
MessageOutput.printf("[HuaweiCanClass::loop] Out: %.02fV, %.02fA of %.02fA, %.02fW\n", _rp.output_voltage, _rp.output_current, _rp.max_output_current, _rp.output_power);
MessageOutput.printf("[HuaweiCanClass::loop] Eff : %.01f%%, Temp in: %.01fC, Temp out: %.01fC\n", _rp.efficiency * 100, _rp.input_temp, _rp.output_temp);
}
// Internal PSU power pin (slot detect) control
if (_rp.output_current > HUAWEI_AUTO_MODE_SHUTDOWN_CURRENT) {
_outputCurrentOnSinceMillis = millis();
}
if (_outputCurrentOnSinceMillis + HUAWEI_AUTO_MODE_SHUTDOWN_DELAY < millis() &&
(_mode == HUAWEI_MODE_AUTO_EXT || _mode == HUAWEI_MODE_AUTO_INT)) {
digitalWrite(_huaweiPower, 1);
}
if (_mode == HUAWEI_MODE_AUTO_INT || _batteryEmergencyCharging) {
// Set voltage limit in periodic intervals if we're in auto mode or if emergency battery charge is requested.
if ( _nextAutoModePeriodicIntMillis < millis()) {
MessageOutput.printf("[HuaweiCanClass::loop] Periodically setting voltage limit: %f \r\n", config.Huawei.Auto_Power_Voltage_Limit);
_setValue(config.Huawei.Auto_Power_Voltage_Limit, HUAWEI_ONLINE_VOLTAGE);
_nextAutoModePeriodicIntMillis = millis() + 60000;
}
}
// ***********************
// Emergency charge
// ***********************
auto stats = Battery.getStats();
if (config.Huawei.Emergency_Charge_Enabled && stats->getImmediateChargingRequest()) {
_batteryEmergencyCharging = true;
// Set output current
float efficiency = (_rp.efficiency > 0.5 ? _rp.efficiency : 1.0);
float outputCurrent = efficiency * (config.Huawei.Auto_Power_Upper_Power_Limit / _rp.output_voltage);
MessageOutput.printf("[HuaweiCanClass::loop] Emergency Charge Output current %f \r\n", outputCurrent);
_setValue(outputCurrent, HUAWEI_ONLINE_CURRENT);
return;
}
if (_batteryEmergencyCharging && !stats->getImmediateChargingRequest()) {
// Battery request has changed. Set current to 0, wait for PSU to respond and then clear state
_setValue(0, HUAWEI_ONLINE_CURRENT);
if (_rp.output_current < 1) {
_batteryEmergencyCharging = false;
}
return;
}
// ***********************
// Automatic power control
// ***********************
if (_mode == HUAWEI_MODE_AUTO_INT ) {
// Check if we should run automatic power calculation at all.
// We may have set a value recently and still wait for output stabilization
if (_autoModeBlockedTillMillis > millis()) {
return;
}
// Re-enable automatic power control if the output voltage has dropped below threshold
if(_rp.output_voltage < config.Huawei.Auto_Power_Enable_Voltage_Limit ) {
_autoPowerEnabledCounter = 10;
}
if (PowerLimiter.isGovernedInverterProducing()) {
_setValue(0.0, HUAWEI_ONLINE_CURRENT);
// Don't run auto mode for a second now. Otherwise we may send too much over the CAN bus
_autoModeBlockedTillMillis = millis() + 1000;
MessageOutput.printf("[HuaweiCanClass::loop] Inverter is active, disable\r\n");
return;
}
if (PowerMeter.getLastUpdate() > _lastPowerMeterUpdateReceivedMillis &&
_autoPowerEnabledCounter > 0) {
// We have received a new PowerMeter value. Also we're _autoPowerEnabled
// So we're good to calculate a new limit
_lastPowerMeterUpdateReceivedMillis = PowerMeter.getLastUpdate();
// Calculate new power limit
float newPowerLimit = -1 * round(PowerMeter.getPowerTotal());
float efficiency = (_rp.efficiency > 0.5 ? _rp.efficiency : 1.0);
// Powerlimit is the requested output power + permissable Grid consumption factoring in the efficiency factor
newPowerLimit += _rp.output_power + config.Huawei.Auto_Power_Target_Power_Consumption / efficiency;
if (verboseLogging){
MessageOutput.printf("[HuaweiCanClass::loop] newPowerLimit: %f, output_power: %f \r\n", newPowerLimit, _rp.output_power);
}
// Check whether the battery SoC limit setting is enabled
if (config.Battery.Enabled && config.Huawei.Auto_Power_BatterySoC_Limits_Enabled) {
uint8_t _batterySoC = Battery.getStats()->getSoC();
// Sets power limit to 0 if the BMS reported SoC reaches or exceeds the user configured value
if (_batterySoC >= config.Huawei.Auto_Power_Stop_BatterySoC_Threshold) {
newPowerLimit = 0;
if (verboseLogging) {
MessageOutput.printf("[HuaweiCanClass::loop] Current battery SoC %i reached "
"stop threshold %i, set newPowerLimit to %f \r\n", _batterySoC,
config.Huawei.Auto_Power_Stop_BatterySoC_Threshold, newPowerLimit);
}
}
}
if (newPowerLimit > config.Huawei.Auto_Power_Lower_Power_Limit) {
// Check if the output power has dropped below the lower limit (i.e. the battery is full)
// and if the PSU should be turned off. Also we use a simple counter mechanism here to be able
// to ramp up from zero output power when starting up
if (_rp.output_power < config.Huawei.Auto_Power_Lower_Power_Limit) {
MessageOutput.printf("[HuaweiCanClass::loop] Power and voltage limit reached. Disabling automatic power control .... \r\n");
_autoPowerEnabledCounter--;
if (_autoPowerEnabledCounter == 0) {
_autoPowerEnabled = false;
_setValue(0, HUAWEI_ONLINE_CURRENT);
return;
}
} else {
_autoPowerEnabledCounter = 10;
}
// Limit power to maximum
if (newPowerLimit > config.Huawei.Auto_Power_Upper_Power_Limit) {
newPowerLimit = config.Huawei.Auto_Power_Upper_Power_Limit;
}
// Calculate output current
float calculatedCurrent = efficiency * (newPowerLimit / _rp.output_voltage);
// Limit output current to value requested by BMS
float permissableCurrent = stats->getChargeCurrentLimitation() - (stats->getChargeCurrent() - _rp.output_current); // BMS current limit - current from other sources, e.g. Victron MPPT charger
float outputCurrent = std::min(calculatedCurrent, permissableCurrent);
outputCurrent= outputCurrent > 0 ? outputCurrent : 0;
if (verboseLogging) {
MessageOutput.printf("[HuaweiCanClass::loop] Setting output current to %.2fA. This is the lower value of calculated %.2fA and BMS permissable %.2fA currents\r\n", outputCurrent, calculatedCurrent, permissableCurrent);
}
_autoPowerEnabled = true;
_setValue(outputCurrent, HUAWEI_ONLINE_CURRENT);
// Don't run auto mode some time to allow for output stabilization after issuing a new value
_autoModeBlockedTillMillis = millis() + 2 * HUAWEI_DATA_REQUEST_INTERVAL_MS;
} else {
// requested PL is below minium. Set current to 0
_autoPowerEnabled = false;
_setValue(0.0, HUAWEI_ONLINE_CURRENT);
}
}
}
}
void HuaweiCanClass::setValue(float in, uint8_t parameterType)
{
if (_mode != HUAWEI_MODE_AUTO_INT) {
_setValue(in, parameterType);
}
}
void HuaweiCanClass::_setValue(float in, uint8_t parameterType)
{
const CONFIG_T& config = Configuration.get();
if (!config.Huawei.Enabled) {
return;
}
uint16_t value;
if (in < 0) {
MessageOutput.printf("[HuaweiCanClass::_setValue] Error: Tried to set voltage/current to negative value %f \r\n", in);
return;
}
// Start PSU if needed
if (in > HUAWEI_AUTO_MODE_SHUTDOWN_CURRENT && parameterType == HUAWEI_ONLINE_CURRENT &&
(_mode == HUAWEI_MODE_AUTO_EXT || _mode == HUAWEI_MODE_AUTO_INT)) {
digitalWrite(_huaweiPower, 0);
_outputCurrentOnSinceMillis = millis();
}
if (parameterType == HUAWEI_OFFLINE_VOLTAGE || parameterType == HUAWEI_ONLINE_VOLTAGE) {
value = in * 1024;
} else if (parameterType == HUAWEI_OFFLINE_CURRENT || parameterType == HUAWEI_ONLINE_CURRENT) {
value = in * MAX_CURRENT_MULTIPLIER;
} else {
return;
}
HuaweiCanComm.setParameterValue(value, parameterType);
}
void HuaweiCanClass::setMode(uint8_t mode) {
const CONFIG_T& config = Configuration.get();
if (!config.Huawei.Enabled) {
return;
}
if(mode == HUAWEI_MODE_OFF) {
digitalWrite(_huaweiPower, 1);
_mode = HUAWEI_MODE_OFF;
}
if(mode == HUAWEI_MODE_ON) {
digitalWrite(_huaweiPower, 0);
_mode = HUAWEI_MODE_ON;
}
if (mode == HUAWEI_MODE_AUTO_INT && !config.Huawei.Auto_Power_Enabled ) {
MessageOutput.println("[HuaweiCanClass::setMode] WARNING: Trying to setmode to internal automatic power control without being enabled in the UI. Ignoring command");
return;
}
if (_mode == HUAWEI_MODE_AUTO_INT && mode != HUAWEI_MODE_AUTO_INT) {
_autoPowerEnabled = false;
_setValue(0, HUAWEI_ONLINE_CURRENT);
}
if(mode == HUAWEI_MODE_AUTO_EXT || mode == HUAWEI_MODE_AUTO_INT) {
_mode = mode;
}
}