OpenDTU-old/src/WebApi_powerlimiter.cpp

146 lines
6.0 KiB
C++

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022 Thomas Basler and others
*/
#include "WebApi_powerlimiter.h"
#include "VeDirectFrameHandler.h"
#include "ArduinoJson.h"
#include "AsyncJson.h"
#include "Configuration.h"
#include "MqttHandleHass.h"
#include "MqttHandleVedirectHass.h"
#include "MqttSettings.h"
#include "PowerMeter.h"
#include "PowerLimiter.h"
#include "WebApi.h"
#include "helper.h"
#include "WebApi_errors.h"
void WebApiPowerLimiterClass::init(AsyncWebServer* server)
{
using std::placeholders::_1;
_server = server;
_server->on("/api/powerlimiter/status", HTTP_GET, std::bind(&WebApiPowerLimiterClass::onStatus, this, _1));
_server->on("/api/powerlimiter/config", HTTP_GET, std::bind(&WebApiPowerLimiterClass::onAdminGet, this, _1));
_server->on("/api/powerlimiter/config", HTTP_POST, std::bind(&WebApiPowerLimiterClass::onAdminPost, this, _1));
}
void WebApiPowerLimiterClass::loop()
{
}
void WebApiPowerLimiterClass::onStatus(AsyncWebServerRequest* request)
{
AsyncJsonResponse* response = new AsyncJsonResponse();
JsonObject root = response->getRoot();
const CONFIG_T& config = Configuration.get();
root[F("enabled")] = config.PowerLimiter_Enabled;
root[F("solar_passtrough_enabled")] = config.PowerLimiter_SolarPassThroughEnabled;
root[F("battery_drain_strategy")] = config.PowerLimiter_BatteryDrainStategy;
root[F("is_inverter_behind_powermeter")] = config.PowerLimiter_IsInverterBehindPowerMeter;
root[F("inverter_id")] = config.PowerLimiter_InverterId;
root[F("inverter_channel_id")] = config.PowerLimiter_InverterChannelId;
root[F("target_power_consumption")] = config.PowerLimiter_TargetPowerConsumption;
root[F("target_power_consumption_hysteresis")] = config.PowerLimiter_TargetPowerConsumptionHysteresis;
root[F("lower_power_limit")] = config.PowerLimiter_LowerPowerLimit;
root[F("upper_power_limit")] = config.PowerLimiter_UpperPowerLimit;
root[F("battery_soc_start_threshold")] = config.PowerLimiter_BatterySocStartThreshold;
root[F("battery_soc_stop_threshold")] = config.PowerLimiter_BatterySocStopThreshold;
root[F("voltage_start_threshold")] = static_cast<int>(config.PowerLimiter_VoltageStartThreshold * 100 +0.5) / 100.0;
root[F("voltage_stop_threshold")] = static_cast<int>(config.PowerLimiter_VoltageStopThreshold * 100 +0.5) / 100.0;;
root[F("voltage_load_correction_factor")] = config.PowerLimiter_VoltageLoadCorrectionFactor;
response->setLength();
request->send(response);
}
void WebApiPowerLimiterClass::onAdminGet(AsyncWebServerRequest* request)
{
if (!WebApi.checkCredentials(request)) {
return;
}
this->onStatus(request);
}
void WebApiPowerLimiterClass::onAdminPost(AsyncWebServerRequest* request)
{
if (!WebApi.checkCredentials(request)) {
return;
}
AsyncJsonResponse* response = new AsyncJsonResponse();
JsonObject retMsg = response->getRoot();
retMsg[F("type")] = F("warning");
if (!request->hasParam("data", true)) {
retMsg[F("message")] = F("No values found!");
response->setLength();
request->send(response);
return;
}
String json = request->getParam("data", true)->value();
if (json.length() > 1024) {
retMsg[F("message")] = F("Data too large!");
response->setLength();
request->send(response);
return;
}
DynamicJsonDocument root(1024);
DeserializationError error = deserializeJson(root, json);
if (error) {
retMsg[F("message")] = F("Failed to parse data!");
response->setLength();
request->send(response);
return;
}
if (!(root.containsKey("enabled")
&& root.containsKey("lower_power_limit")
&& root.containsKey("inverter_id")
&& root.containsKey("inverter_channel_id")
&& root.containsKey("target_power_consumption")
&& root.containsKey("target_power_consumption_hysteresis")
)) {
retMsg[F("message")] = F("Values are missing!");
retMsg[F("code")] = WebApiError::GenericValueMissing;
response->setLength();
request->send(response);
return;
}
CONFIG_T& config = Configuration.get();
config.PowerLimiter_Enabled = root[F("enabled")].as<bool>();
config.PowerLimiter_SolarPassThroughEnabled = root[F("solar_passtrough_enabled")].as<bool>();
config.PowerLimiter_BatteryDrainStategy= root[F("battery_drain_strategy")].as<uint8_t>();
config.PowerLimiter_IsInverterBehindPowerMeter = root[F("is_inverter_behind_powermeter")].as<bool>();
config.PowerLimiter_InverterId = root[F("inverter_id")].as<uint8_t>();
config.PowerLimiter_InverterChannelId = root[F("inverter_channel_id")].as<uint8_t>();
config.PowerLimiter_TargetPowerConsumption = root[F("target_power_consumption")].as<int32_t>();
config.PowerLimiter_TargetPowerConsumptionHysteresis = root[F("target_power_consumption_hysteresis")].as<int32_t>();
config.PowerLimiter_LowerPowerLimit = root[F("lower_power_limit")].as<int32_t>();
config.PowerLimiter_UpperPowerLimit = root[F("upper_power_limit")].as<int32_t>();
config.PowerLimiter_BatterySocStartThreshold = root[F("battery_soc_start_threshold")].as<uint32_t>();
config.PowerLimiter_BatterySocStopThreshold = root[F("battery_soc_stop_threshold")].as<uint32_t>();
config.PowerLimiter_VoltageStartThreshold = root[F("voltage_start_threshold")].as<float>();
config.PowerLimiter_VoltageStartThreshold = static_cast<int>(config.PowerLimiter_VoltageStartThreshold * 100) / 100.0;
config.PowerLimiter_VoltageStopThreshold = root[F("voltage_stop_threshold")].as<float>();
config.PowerLimiter_VoltageStopThreshold = static_cast<int>(config.PowerLimiter_VoltageStopThreshold * 100) / 100.0;
config.PowerLimiter_VoltageLoadCorrectionFactor = root[F("voltage_load_correction_factor")].as<float>();
Configuration.write();
retMsg[F("type")] = F("success");
retMsg[F("message")] = F("Settings saved!");
response->setLength();
request->send(response);
}