OpenDTU-old/lib/Hoymiles/src/inverters/InverterAbstract.h
2022-06-16 01:18:39 +02:00

125 lines
3.3 KiB
C++

#pragma once
#include "types.h"
#include <Arduino.h>
#include <cstdint>
#define MAX_NAME_LENGTH 32
// units
enum { UNIT_V = 0,
UNIT_A,
UNIT_W,
UNIT_WH,
UNIT_KWH,
UNIT_HZ,
UNIT_C,
UNIT_PCT };
const char* const units[] = { "V", "A", "W", "Wh", "kWh", "Hz", "°C", "%" };
// field types
enum { FLD_UDC = 0,
FLD_IDC,
FLD_PDC,
FLD_YD,
FLD_YT,
FLD_UAC,
FLD_IAC,
FLD_PAC,
FLD_F,
FLD_T,
FLD_PCT,
FLD_EFF,
FLD_IRR };
const char* const fields[] = { "U_DC", "I_DC", "P_DC", "YieldDay", "YieldTotal",
"U_AC", "I_AC", "P_AC", "Freq", "Temp", "Pct", "Effiency", "Irradiation" };
// indices to calculation functions, defined in hmInverter.h
enum { CALC_YT_CH0 = 0,
CALC_YD_CH0,
CALC_UDC_CH,
CALC_PDC_CH0,
CALC_EFF_CH0,
CALC_IRR_CH };
enum { CMD_CALC = 0xffff };
// CH0 is default channel (freq, ac, temp)
enum { CH0 = 0,
CH1,
CH2,
CH3,
CH4 };
typedef struct {
uint8_t fieldId; // field id
uint8_t unitId; // uint id
uint8_t ch; // channel 0 - 4
uint8_t start; // pos of first byte in buffer
uint8_t num; // number of bytes in buffer
uint16_t div; // divisor / calc command
} byteAssign_t;
#define MAX_RF_FRAGMENT_COUNT 5
#define MAX_RETRANSMIT_COUNT 5
class InverterAbstract;
// prototypes
static float calcYieldTotalCh0(InverterAbstract* iv, uint8_t arg0);
static float calcYieldDayCh0(InverterAbstract* iv, uint8_t arg0);
static float calcUdcCh(InverterAbstract* iv, uint8_t arg0);
static float calcPowerDcCh0(InverterAbstract* iv, uint8_t arg0);
static float calcEffiencyCh0(InverterAbstract* iv, uint8_t arg0);
static float calcIrradiation(InverterAbstract* iv, uint8_t arg0);
using func_t = float(InverterAbstract*, uint8_t);
struct calcFunc_t {
uint8_t funcId; // unique id
func_t* func; // function pointer
};
const calcFunc_t calcFunctions[] = {
{ CALC_YT_CH0, &calcYieldTotalCh0 },
{ CALC_YD_CH0, &calcYieldDayCh0 },
{ CALC_UDC_CH, &calcUdcCh },
{ CALC_PDC_CH0, &calcPowerDcCh0 },
{ CALC_EFF_CH0, &calcEffiencyCh0 },
{ CALC_IRR_CH, &calcIrradiation }
};
class InverterAbstract {
public:
void setSerial(uint64_t serial);
uint64_t serial();
void setName(const char* name);
const char* name();
virtual String typeName() = 0;
virtual const byteAssign_t* getByteAssignment() = 0;
virtual const uint8_t getAssignmentCount() = 0;
uint8_t getChannelCount();
uint16_t getChannelMaxPower(uint8_t channel);
void clearRxFragmentBuffer();
void addRxFragment(uint8_t fragment[], uint8_t len);
uint8_t verifyAllFragments();
uint8_t getAssignIdxByChannelField(uint8_t channel, uint8_t fieldId);
float getValue(uint8_t channel, uint8_t fieldId);
bool hasValue(uint8_t channel, uint8_t fieldId);
const char* getUnit(uint8_t channel, uint8_t fieldId);
const char* getName(uint8_t channel, uint8_t fieldId);
uint32_t getLastStatsUpdate();
private:
serial_u _serial;
char _name[MAX_NAME_LENGTH];
fragment_t _rxFragmentBuffer[MAX_RF_FRAGMENT_COUNT];
uint8_t _rxFragmentMaxPacketId = 0;
uint8_t _rxFragmentLastPacketId = 0;
uint8_t _rxFragmentRetransmitCnt = 0;
uint8_t _payloadStats[MAX_RF_FRAGMENT_COUNT * MAX_RF_PAYLOAD_SIZE];
uint32_t _lastStatsUpdate = 0;
};