// SPDX-License-Identifier: GPL-2.0-or-later #include "PylontechCanReceiver.h" #include "Battery.h" #include "MqttHandleBatteryHass.h" #include "Configuration.h" #include "MqttSettings.h" #include "Utils.h" #include "__compiled_constants.h" MqttHandleBatteryHassClass MqttHandleBatteryHass; void MqttHandleBatteryHassClass::init(Scheduler& scheduler) { scheduler.addTask(_loopTask); _loopTask.setCallback(std::bind(&MqttHandleBatteryHassClass::loop, this)); _loopTask.setIterations(TASK_FOREVER); _loopTask.enable(); } void MqttHandleBatteryHassClass::loop() { CONFIG_T& config = Configuration.get(); if (!config.Battery.Enabled) { return; } if (!config.Mqtt.Hass.Enabled) { return; } // TODO(schlimmchen): this cannot make sure that transient // connection problems are actually always noticed. if (!MqttSettings.getConnected()) { _doPublish = true; return; } // only publish HA config once when (re-)connecting // to the MQTT broker or on config changes. if (!_doPublish) { return; } // the MQTT battery provider does not re-publish the SoC under a different // known topic. we don't know the manufacture either. HASS auto-discovery // for that provider makes no sense. if (config.Battery.Provider != 2) { publishSensor("Manufacturer", "mdi:factory", "manufacturer"); publishSensor("Data Age", "mdi:timer-sand", "dataAge", "duration", "measurement", "s"); publishSensor("State of Charge (SoC)", "mdi:battery-medium", "stateOfCharge", "battery", "measurement", "%"); } switch (config.Battery.Provider) { case 0: // Pylontech Battery publishSensor("Battery voltage", NULL, "voltage", "voltage", "measurement", "V"); publishSensor("Battery current", NULL, "current", "current", "measurement", "A"); publishSensor("Temperature", NULL, "temperature", "temperature", "measurement", "°C"); publishSensor("State of Health (SOH)", "mdi:heart-plus", "stateOfHealth", NULL, "measurement", "%"); publishSensor("Charge voltage (BMS)", NULL, "settings/chargeVoltage", "voltage", "measurement", "V"); publishSensor("Charge current limit", NULL, "settings/chargeCurrentLimitation", "current", "measurement", "A"); publishSensor("Discharge current limit", NULL, "settings/dischargeCurrentLimitation", "current", "measurement", "A"); publishBinarySensor("Alarm Discharge current", "mdi:alert", "alarm/overCurrentDischarge", "1", "0"); publishBinarySensor("Warning Discharge current", "mdi:alert-outline", "warning/highCurrentDischarge", "1", "0"); publishBinarySensor("Alarm Temperature low", "mdi:thermometer-low", "alarm/underTemperature", "1", "0"); publishBinarySensor("Warning Temperature low", "mdi:thermometer-low", "warning/lowTemperature", "1", "0"); publishBinarySensor("Alarm Temperature high", "mdi:thermometer-high", "alarm/overTemperature", "1", "0"); publishBinarySensor("Warning Temperature high", "mdi:thermometer-high", "warning/highTemperature", "1", "0"); publishBinarySensor("Alarm Voltage low", "mdi:alert", "alarm/underVoltage", "1", "0"); publishBinarySensor("Warning Voltage low", "mdi:alert-outline", "warning/lowVoltage", "1", "0"); publishBinarySensor("Alarm Voltage high", "mdi:alert", "alarm/overVoltage", "1", "0"); publishBinarySensor("Warning Voltage high", "mdi:alert-outline", "warning/highVoltage", "1", "0"); publishBinarySensor("Alarm BMS internal", "mdi:alert", "alarm/bmsInternal", "1", "0"); publishBinarySensor("Warning BMS internal", "mdi:alert-outline", "warning/bmsInternal", "1", "0"); publishBinarySensor("Alarm High charge current", "mdi:alert", "alarm/overCurrentCharge", "1", "0"); publishBinarySensor("Warning High charge current", "mdi:alert-outline", "warning/highCurrentCharge", "1", "0"); publishBinarySensor("Charge enabled", "mdi:battery-arrow-up", "charging/chargeEnabled", "1", "0"); publishBinarySensor("Discharge enabled", "mdi:battery-arrow-down", "charging/dischargeEnabled", "1", "0"); publishBinarySensor("Charge immediately", "mdi:alert", "charging/chargeImmediately", "1", "0"); break; case 1: // JK BMS // caption icon topic dev. class state class unit publishSensor("Voltage", "mdi:battery-charging", "BatteryVoltageMilliVolt", "voltage", "measurement", "mV"); publishSensor("Current", "mdi:current-dc", "BatteryCurrentMilliAmps", "current", "measurement", "mA"); publishSensor("BMS Temperature", "mdi:thermometer", "BmsTempCelsius", "temperature", "measurement", "°C"); publishSensor("Cell Voltage Diff", "mdi:battery-alert", "CellDiffMilliVolt", "voltage", "measurement", "mV"); publishSensor("Charge Cycles", "mdi:counter", "BatteryCycles"); publishSensor("Cycle Capacity", "mdi:battery-sync", "BatteryCycleCapacity"); publishBinarySensor("Charging Possible", "mdi:battery-arrow-up", "status/ChargingActive", "1", "0"); publishBinarySensor("Discharging Possible", "mdi:battery-arrow-down", "status/DischargingActive", "1", "0"); publishBinarySensor("Balancing Active", "mdi:scale-balance", "status/BalancingActive", "1", "0"); #define PBS(a, b, c) publishBinarySensor("Alarm: " a, "mdi:" b, "alarms/" c, "1", "0") PBS("Low Capacity", "battery-alert-variant-outline", "LowCapacity"); PBS("BMS Overtemperature", "thermometer-alert", "BmsOvertemperature"); PBS("Charging Overvoltage", "fuse-alert", "ChargingOvervoltage"); PBS("Discharge Undervoltage", "fuse-alert", "DischargeUndervoltage"); PBS("Battery Overtemperature", "thermometer-alert", "BatteryOvertemperature"); PBS("Charging Overcurrent", "fuse-alert", "ChargingOvercurrent"); PBS("Discharging Overcurrent", "fuse-alert", "DischargeOvercurrent"); PBS("Cell Voltage Difference", "battery-alert", "CellVoltageDifference"); PBS("Battery Box Overtemperature", "thermometer-alert", "BatteryBoxOvertemperature"); PBS("Battery Undertemperature", "thermometer-alert", "BatteryUndertemperature"); PBS("Cell Overvoltage", "battery-alert", "CellOvervoltage"); PBS("Cell Undervoltage", "battery-alert", "CellUndervoltage"); #undef PBS break; case 2: // SoC from MQTT break; case 3: // Victron SmartShunt publishSensor("Voltage", "mdi:battery-charging", "voltage", "voltage", "measurement", "V"); publishSensor("Current", "mdi:current-dc", "current", "current", "measurement", "A"); publishSensor("Instantaneous Power", NULL, "instantaneousPower", "power", "measurement", "W"); publishSensor("Charged Energy", NULL, "chargedEnergy", "energy", "total_increasing", "kWh"); publishSensor("Discharged Energy", NULL, "dischargedEnergy", "energy", "total_increasing", "kWh"); publishSensor("Charge Cycles", "mdi:counter", "chargeCycles"); publishSensor("Consumed Amp Hours", NULL, "consumedAmpHours", NULL, "measurement", "Ah"); publishSensor("Last Full Charge", "mdi:timelapse", "lastFullCharge", NULL, NULL, "min"); break; } _doPublish = false; } void MqttHandleBatteryHassClass::publishSensor(const char* caption, const char* icon, const char* subTopic, const char* deviceClass, const char* stateClass, const char* unitOfMeasurement ) { String sensorId = caption; sensorId.replace(" ", "_"); sensorId.replace(".", ""); sensorId.replace("(", ""); sensorId.replace(")", ""); sensorId.toLowerCase(); String configTopic = "sensor/dtu_battery_" + serial + "/" + sensorId + "/config"; String statTopic = MqttSettings.getPrefix() + "battery/"; // omit serial to avoid a breaking change // statTopic.concat(serial); // statTopic.concat("/"); statTopic.concat(subTopic); JsonDocument root; root["name"] = caption; root["stat_t"] = statTopic; root["uniq_id"] = serial + "_" + sensorId; if (icon != NULL) { root["icon"] = icon; } if (unitOfMeasurement != NULL) { root["unit_of_meas"] = unitOfMeasurement; } JsonObject deviceObj = root["dev"].to(); createDeviceInfo(deviceObj); if (Configuration.get().Mqtt.Hass.Expire) { root["exp_aft"] = Battery.getStats()->getMqttFullPublishIntervalMs() / 1000 * 3; } if (deviceClass != NULL) { root["dev_cla"] = deviceClass; } if (stateClass != NULL) { root["stat_cla"] = stateClass; } if (!Utils::checkJsonAlloc(root, __FUNCTION__, __LINE__)) { return; } char buffer[512]; serializeJson(root, buffer); publish(configTopic, buffer); } void MqttHandleBatteryHassClass::publishBinarySensor(const char* caption, const char* icon, const char* subTopic, const char* payload_on, const char* payload_off) { String sensorId = caption; sensorId.replace(" ", "_"); sensorId.replace(".", ""); sensorId.replace("(", ""); sensorId.replace(")", ""); sensorId.replace(":", ""); sensorId.toLowerCase(); String configTopic = "binary_sensor/dtu_battery_" + serial + "/" + sensorId + "/config"; String statTopic = MqttSettings.getPrefix() + "battery/"; // omit serial to avoid a breaking change // statTopic.concat(serial); // statTopic.concat("/"); statTopic.concat(subTopic); JsonDocument root; root["name"] = caption; root["uniq_id"] = serial + "_" + sensorId; root["stat_t"] = statTopic; root["pl_on"] = payload_on; root["pl_off"] = payload_off; if (icon != NULL) { root["icon"] = icon; } auto deviceObj = root["dev"].to(); createDeviceInfo(deviceObj); if (!Utils::checkJsonAlloc(root, __FUNCTION__, __LINE__)) { return; } char buffer[512]; serializeJson(root, buffer); publish(configTopic, buffer); } void MqttHandleBatteryHassClass::createDeviceInfo(JsonObject& object) { object["name"] = "Battery(" + serial + ")"; auto& config = Configuration.get(); if (config.Battery.Provider == 1) { object["name"] = "JK BMS (" + Battery.getStats()->getManufacturer() + ")"; } object["ids"] = serial; object["cu"] = String("http://") + NetworkSettings.localIP().toString(); object["mf"] = "OpenDTU"; object["mdl"] = Battery.getStats()->getManufacturer(); object["sw"] = __COMPILED_GIT_HASH__; } void MqttHandleBatteryHassClass::publish(const String& subtopic, const String& payload) { String topic = Configuration.get().Mqtt.Hass.Topic; topic += subtopic; MqttSettings.publishGeneric(topic.c_str(), payload.c_str(), Configuration.get().Mqtt.Hass.Retain); }