merge upstream tag v24.4.12, resolve conflicts (helgeerbe), fix eslint errors (schlimmchen) and adopt new web api method to save code duplication (schlimmchen).
this allows to use two VE.Direct interfaces, as there is no conflict
regarding HW serial port 2 after making the battery interfaces use
serial port 0 on devices with USB CDC. on those chips HW serial 0 is
free to be used since serial messages are written through the USB
interface directly.
we found that the inverter sometimes stops responding to commands,
especially to the "start producing" command. we now count the number of
consecutive timeouts when trying to send a new limit or power state
commands. after two timeouts were recorded, every additional timeout
will send a restart command to the inverter.
as a last resort, if the counter keeps climbing, the DTU is restarted.
notice that this only targets unresponsive inverters which are
reachable. unreachable inverters are not restarted and do not cause a
DTU reboot. this is important for solar-driven inverters, which are
unreachable during the night. the DPL will not calculate a new limit and
hence the updateInverter() method will do nothing while the target
inverter is unreachable.
publish the timeout counter to MQTT for monitoring purposes.
avoid performing a calculation based on a (slightly) outdated power
meter reading, which was aquired just before the limit was actually
applied by the inverter, but which was received by OpenDTU-OnBattery
after the inverter stats.
without a power meter configured, the DPL now sets the base load as the
inverter limit if the battery charge allows it. it also takes
solar-passthrough into account, i.e., if the battery is in a charge
cycle but the solar output (Victron MPPT) is significant, the solar
power will be used up until the base load. if the battery reaches the
full solar passthrough threshold, the DPL will match the inverter limit
to the MPPT solar output.
on power meter issues (usually a timeout), keep the inverter enabled and
make it produce the configured base load limit if the battery can be
discharged. that should be okay since the base load config value is
expected to be small and a little less than the actual household base
load, i.e., if this amount of power is produced, the household will
consume it in any case and no energy is fed into the grid.
double precision floating point numbers are not needed to handle
VE.Direct values. handling double is implemented in software and hence
*much* more resource intensive.
queue every text event until the frame was checked by it checksum. then
process the data directly into the buffer struct. do not clear the
buffer struct, so it will always include the most recent value of a
particular data point.
users are manipulating the DPL using HTTP POST requests. often they are
requesting the current settings using HTTP GET on the respective route,
then change a particular settings, and send all the data back using HTTP
POST. if they failed to remove the metadata node from the JSON,
OpenDTU-OnBattery would not be able to process the JSON due to its size.
the web app does not submit the metadata.
to avoid problems, the metadata is now split from the configuration
data.
this method calls the overflowed() method on the respective
DynamicJsonDocument and prints a respective message if not all
data could be added to the DynamicJsonDocument.
* updating the SoC or value shall also update the general timestamp, as
the latter is defined as "any value changed", which includes SoC and
voltage, of course.
* if the last update is not a valid timestamp at all, the
updateAvailable method must always return false, obviously.
determine the amount of controllers actually in use dynamically,
especially to avoid indices which are invalid, causing an error
to be printed, even though the user did not do anything wrong.
in your pin_mapping.json, add a powermeter object like this:
[
{
"name": "My Board",
...
"powermeter": {
"rx": <num>,
"tx": <num>,
"dere": <num>
},
...
}
]
the SML power meter requires the rx pin to be set. the SDM power meter
requires the rx and tx pins are set. the "dere" pin pin is optional and
if set, this pin controls the driver enable and receiver enable pins of
the RS485 transceiver. the SDM library handles this pin.
closes#771.
* remove/comment unused variables to avoid compiler warnings
* cleanups: fix indention and style, make variable private, implement
getters in header and make const.
* optimize message output: respect verbose logging setting. prefix
output with SMA_HM.
* use newly introduced mutex in PowerMeterClass also for SMA HomeManager
* refactor code for readibility, unindent where possible.
the SDM power meter (among others) writes the power consumption of three
phases in multiple steps. this change helps to prevent getTotalPower()
reading intermediate values, e.g., reading a new value for phase 1 but
old values for phase 2 and 3 since phase 2 is currently read.
cache the values, and write them all at once, protected by a mutex,
later.
closes#732.
this changeset refactors the web application's DPL settings view. the
DPL settings can be complex, and they shall be presented in a way that
allows users to comprehend their meaning. irrelevant settings are now
hidden or displayed dynamically based on the influencing settings.
* group SoC thresholds into their own card
* hide battery SoC thresholds if battery disabled. if the user did not
even enable the battery interface, battery SoC values will not be used
for DPL decisions. in that case we completely hide the respective
settings from the DPL admin view. this reduces the amount of settings
for new users and especially users who don't even have a battery in
their setup or have no BMS connected.
* group voltage thresholds and improve label texts
* fix load correction factor unit
* fix header (wording)
* group solar-passthrough settings in new card
* group inverter-related settings
* hide solar passthrough settings if VE.Direct is disabled. closes#662.
* completely disable form if any requirement is not met
* list available inverters by name and type. this makes it much more
convenient to select the right inverter, especially since the order of
the inverters in the web UI is decoupled from their position in the
internal array, which was used to select them previously. care was
taken that old configs select the same inverter after an update.
when editing the DPL settings, the selects an inverter from the newly
created drow-down list, and the respective old inverter is
pre-selected.
* disable form if no inverter is configured (config alert)
* make inverter input selection dynamic. adjust selection to actual
amount of channels for selected inverter. skip selection altogether if
inverter has only one channel, or if it is solar powered.
* web app: wording adjustments
* group meta data into new property and exclude from submission. saves
memory when evaluating the submitted settings.
* hide irrelevant settings if inverter is solar-powered
* move restart hour setting to inverter card. translate setting which
disabled automatic restart.
* simplify "drain strategy" setting into an on/off toggle. care was
taken that existing configs work the same after an upgrade. the
respective drain strategy is translated into the new setting when
reading the config. once the config is written, the new setting is
persisted and the old is not part of the config any more.
* show more configuration hints, depending on actual configuration
* replace inputs by InputElement components where possible
* fix compiler warning in SerialPortManager.cpp: function must not
return void
* clean up and simplify implementation of usesHwPort2()
* make const
* overrides are final
* default implementation returns false
* implement in header, as the implementation is very simple
* rename PortManager to SerialPortManager. as "PortManager" is too
generic, the static instance of the serial port manager is renamed to
"SerialPortManager". the class is therefore renamed to
SerialPortManagerClass, which is in line with other (static) classes
withing OpenDTU(-OnBattery).
* implement separate data ages for MPPT charge controllers
* make sure MPPT data and live data time out
* do not use invalid data of MPPT controlers for calculations
* add :key binding to v-for iterating over MPPT instances
this change adds support for a second Victron MPPT charge controller
using a second serial connection.
* Add device configuration for a second victron mppt
* Update VedirectView for second victron mppt
* Update MqttHandleVedirect for second victron mppt
* Update MqttHandleVedirectHass for second victron mppt
* Handle nonexisting victron controllers with optionals
* Add bool-function to Battery and inherited classes, if uart port 2 is
being used
* Introduced a serial port manager. In order to prevent the battery and
the Victron MPPT to use the same hw serial ports, this class keeps
track of the used ports and their owners.
* remove duplicated #defines. this is most probably a merge error from
2024-01-16, as evidenced by 63205f88b, which added these duplicates.
* sort values by upstream and downstream projects. add a comment which
tells us in the future where OpenDTU-OnBattery-specific values start.
currently this is only supported by the Pylontech battery provider, as
it reports a "charge battery immediately" alarm. this will also be
implemented by the JK BMS provider, and possibly also by the smart shunt
provider.
the method will be used to determine whether or not to start charging
the battery using the (Huawei) charger.
by default and until this change, we assumed that the inverter
controlled by the DPL is powered by a battery. not all users have a
battery in their system. they still use the DPL to achieve net-zero
export. those users can now tell the DPL that their inverter is powered
by solar modules rather than a battery and the DPL will behave
accordingly.
the update frequency of Victron MPPT charger data, the battery Soc, the
huawei charger power, and the power meter differ from one another, and
differ in particular from the inverter update frequency.
the OnBattery-specific data is now handled in a new method, outside the
upstream code, which merely call the new function(s). the new function
will update the websocket independently from inverter updates. also, it
adds the respective data if it actually changed since it was last
updated through the websocket.
for the webapp to be able to recover in case of errors, all values are
also written to the websocket with a fixed interval of 10 seconds.
we previously only called commitPowerLimit() if the desired limit
changed such that the change was bigger than the hysteresis. we found
that if the limit update was not received and the desired limit would
not change much, the limit of the inverter was wrong for a long time.
to mitigate this, we introduced re-sending the limit update every 60
seconds, regardless of what the limit reported by the inverter was at
that time.
if the power-up command was not received, we also would repeat it only
once every 60 seconds.
this leads to a new kind of staleness and the actual inverter state was
still not matching the desired state.
this new approach effectively adds an additional control loop at the
start of the DPL loop(). that new function compares the requested
inverter state to the actual reported state. it sends updates (limit
update or power on state) until the desired inverter state is reached,
or until a (hard-coded) timeout occurs.
this approach also allows us to send power-up, power-down, and limit
update commands independent from one another and in a particular order.
this should make sure that the inverter is in the desired state even if
conditions change slowly and commands were not received as expected.
the DPL is interested in the battery's voltage to make decisions about
draining the battery or letting it charge (if the user opts to use
voltage thresholds rather than SoC thresholds). using the DC input
voltage reported by the inverter under control has disadvantages:
* the data might be quite old due to the communication protocol
implementation. more inverters being polled means even more lag. the
connection being wireless makes this even worse, due to the need
to retry the occasional lost packet, etc.
* the data is not very accurate, since the DC input of the inverter is
actually some cabling and a couple of junctions away from the actual
battery. this voltage drop can mostly only be estimated and is worse
with higher load. the load correction factor is there to mitigate
this, but it has its own problems and is cumbersome to calibrate.
instead, this change aims to use more accurate battery voltage readings,
if possible. the DPL now prefers the voltage as reported by the BMS,
since it is for sure the closest to the battery of all measuring points
and measures its voltage accurately regardless of the load (the voltage
reading will still drop with higher loads, but this will be only due to
the battery's internal resistance, not that of cabling or junctions). if
no BMS voltage reading is available, the DPL will instead use the charge
controller's voltage reading, as it is available with much higher
frequency and is assumed to be more accurate as it offers a resolution
of 10mV. only if none of these two sources can be used, the inverter DC
input voltage is assumed as the battery voltage.
closes#655.